
Hyper-Substructure Enhanced Link Predictor
Jian Zhang

Institute of Cyberspace Security
Zhejiang University of Technology, China

jianzh@zjut.edu.cn

Jun Zheng
Institute of Cyberspace Security

Zhejiang University of Technology, China
zjun2878@gmail.com

Jinyin Chen
Institute of Cyberspace Security

Zhejiang University of Technology, China
chenjinyin@zjut.edu.cn

Qi Xuan
Institute of Cyberspace Security

Zhejiang University of Technology, China
xuanqi@zjut.edu.cn

ABSTRACT
Link prediction has long been the focus in the analysis of network-
structured data. Though straightforward and efficient, heuristic
approaches like Common Neighbors perform link prediction with
pre-defined assumptions and only use superficial structural features.
While it is widely acknowledged that a vertex could be characterized
by a bunch of neighbor vertices, network embedding algorithms
and newly emerged graph neural networks still exploit structural
features on the whole network, which may inevitably bring in
noises and limits the scalability of those methods. In this paper, we
propose an end-to-end deep learning framework, namely hyper-
substructure enhanced link predictor (HELP), for link prediction.
HELP utilizes local topological structures from the neighborhood
of the given vertex pairs, avoiding useless features. For further
exploiting higher-order structural information, HELP also learns
features from hyper-substructure network (HSN).Extensive experi-
ments on six benchmark datasets have shown the state-of-the-art
performance of HELP on link prediction.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Knowledge representation and reasoning.

KEYWORDS
Link prediction, subgraph, graph classification, graph neural net-
work, deep learning

ACM Reference Format:
Jian Zhang, Jun Zheng, Jinyin Chen, and Qi Xuan. 2020. Hyper-Substructure
Enhanced Link Predictor. In Proceedings of the 29th ACM International Con-
ference on Information and Knowledge Management (CIKM ’20), October
19–23, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3340531.3412096

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3412096

1 INTRODUCTION
As a representative network analysis task, link prediction infers the
linkage status of a given pair of vertices in a network. Due to its
practicability, link prediction has been widely applied in various ar-
eas, such as commodity recommendation on e-commerce platforms
and friends recommendation in online social networks (OSNs).

Heuristic link prediction approaches, such as Common Neigh-
bors (CN), Resource Allocation Index (RA) and Katz Index, use either
local or global similarity scores to make prediction [5]. For instance,
in OSN like Weibo, candidate friends would be recommended ac-
cording to the common friends one has with other users. Though
straightforward and efficient, heuristic approaches only learn su-
perficial structural features but fail to characterize the complexity
of networks. Later developed network embedding algorithms, such
as DeepWalk [6] and node2vec [2], focus on the contexts of vertices
in the sequences generated by random walk or its variants. The
random walk-based algorithms, however, need to learn embeddings
over the whole network, which limits the scalability to large-scale
networks even with parallelized computation. Apart from the need
for plenty of predefined parameters, they are gradually exceeded
by newly emerged graph neural networks (GNNs).

With graph convolution network (GCN) [4] as the representa-
tive, the newly developed GNNs have shown their power on many
tasks. Despite the performance, most GNNs make inference over
the whole network, which leads to high computational complex-
ity and might bring in noise since not all vertices are useful for
downstream tasks. Though graph attention network (GAT) [8] and
GraphSAGE [3] try to learn embeddings over the neighborhood
of vertices, they still focus on superficial features. And so does
SEAL [10]. In social networks, a few individuals may consists of a
group for some purposes. And similar cases like pair programming
are also common in open source software development. The inter-
actions between the groups could characterize the higher-order
structural features of the network. However, few existing methods
pay attention to such information.

To tackle the limitations of existing algorithms, we propose an
end-to-end deep learning framework, namely hyper-substructure
enhanced link predictor (HELP), for link prediction. Converting link
prediction problem to graph classification, HELP infers linkage sta-
tus of a given pair of vertices based on their neighborhood rather
than the whole network. The neighborhood selected by person-
alized PageRank (PPR) [1] consists of the vertices closest to the
given vertices, avoiding useless structural features. Neighborhood

https://doi.org/10.1145/3340531.3412096
https://doi.org/10.1145/3340531.3412096

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Jian Zhang, Jun Zheng, Jinyin Chen, and Qi Xuan

learning enables HELP with scalability to large-scale networks. And
vertex feature vectors characterizing the relative position of the
vertex in the network are constructed to improve the accuracy. To
utilize higher-order topological structures, networks constructed
by substructures of the subgraph, namely hyper-substructure net-
work (HSN), are also used for link prediction. And we use 2𝑛𝑑 -order
HSN to validate its advantage in this paper. The obtained networks
are finally fed into a GNN to make prediction. The main contribu-
tions of the paper are summarized as follows:

• We propose an end-to-end deep learning framework, namely
hyper-substructure enhanced link predicitor (HELP), for
link prediction. And its outstanding performance have been
proved by extensive experiments.

• We convert link prediction problem to graph classification
and infer linkage status based on subgraphs rather than the
whole network, expending the scalability of HELP.

• We creatively introduce HSN into link prediction to utilize
higher-order structural information, which offers insights
of network structure mining.

2 PROBLEM DEFINITION
Suppose we have a graph 𝐺 = ⟨𝑉 , 𝐸⟩ with a set of vertices 𝑉 =

{𝑣𝑖 |𝑖 = 0, 1, · · · , 𝑁 − 1} where 𝑁 represents the number of vertices
and a set of edges 𝐸 ⊆ 𝑉 ×𝑉 . Given a pair of vertices 𝑢 and 𝑣 , our
goal is to infer the linkage status between 𝑢 and 𝑣 based on their
neighborhood Γ (𝑢, 𝑣) and its hyper-substructure network.

3 METHOD
In this section, we give a detailed description of HELP in three
parts: 1) neighborhood normalization, 2) HSN construction and
3) the deep learning-based link prediction framework.

3.1 Neighborhood Normalization
Before performing link prediction, we need to extract a subgraph of
G for (𝑢, 𝑣). Rather than directly using the 1𝑠𝑡 or 2𝑛𝑑 neighbors of
𝑢 and 𝑣 which may cause the uncertainty of the subgraph size, we
incorporate personalized PageRank (PPR) [1] into HELP to make
subgraph extraction and normalization. And PPR is defined as

Π𝑝𝑝𝑟 = 𝛼 (𝐼𝑛 − (1 − 𝛼)𝐷−1𝐴)−1, (1)

where 𝐷 is the degree matrix of 𝐺 and 𝛼 represents the restart
probability. Each row 𝜋 (𝑖) = Π

𝑝𝑝𝑟

(𝑖) is the PPR vector for vertex
𝑖 and the element 𝜋 (𝑖)𝑗 reflects the closeness between vertex 𝑖
and 𝑗 . We then sort 𝜋 (𝑖) in descending order of the element value
and choose the first 𝑁𝑛𝑏 vertices to construct the subgraph which
is denoted by 𝐺 (𝑢, 𝑣). We make random selection if there exists
multiple nodes of the same PPR probability. We obtain Γ(𝑢) and
Γ(𝑣) for vertex 𝑢 and 𝑣 , respectively. The vertices in Γ(𝑢) and Γ(𝑣)
are linked if they are connected in 𝐺 . When Γ(𝑢) and Γ(𝑣) contain
the same vertex, they will be linked but labeled as different vertices
in𝐺 (𝑢, 𝑣). Also, we construct a feature matrix for𝐺 (𝑢, 𝑣). For vertex
𝑖 in 𝐺 (𝑢, 𝑣), the feature vector is defined as the concatenation of
one-hot encoded 𝐿𝑆𝑃 (𝑖, 𝑢) on 𝐺 (𝑢, 𝑣), where 𝐿𝑆𝑃 (𝑖, 𝑢) denotes the
distance, i.e. length of shortest path, between 𝑖 and 𝑢 on 𝐺 (𝑢, 𝑣).

1 2

3 4
5

7

8

6 9

10

2 42 5 3 5 4 53 41 2

6 76 8 7 86 97 99 10

(4,5)

(3,5)

(7,8)

(6,7)

(6,9)

(3,4)

Vertex
Grouping

Vertex Group
Sorting

Vertex Group Wiring

2
,u vHSN（ ）

HSN Construction

(,)G u v

()up
()vp

Figure 1: Illustration of 𝐻𝑆𝑁 (2)
𝑢,𝑣 ’s construction. The red ver-

tices represent the vertices in 𝐺 (𝑢) and those of yellow are
the vertices in 𝐺 (𝑣). The blue lines denote the interactions
between 𝐺 (𝑢) and 𝐺 (𝑣).

3.2 HSN Construction
𝐺 (𝑢, 𝑣) characterizes the local structural features of 𝑢 and 𝑣 but do
not describes the interactions between small groups in the network.
To exploit higher-order structural information, we propose HSN
to characterize the interactions of the substructures in𝐺 (𝑢, 𝑣). 𝐾𝑡ℎ
order HSN, denoted by 𝐻𝑆𝑁 (𝐾) , is constructed by following steps:

(1) Vertex Grouping. Group the vertices in 𝐺 (𝑢) and make
sure that each vertex should be grouped with arbitrary ver-
tex at least once. The groups are represented by 𝑝 (𝑢) =

{𝑝 (𝑢)1 , · · · , 𝑝 (𝑢)
𝑀

} where 𝑀 = 𝐶𝐾
𝑁𝑛𝑏

and 𝑝 (𝑢)
𝑖

consists of 𝐾
vertices randomly selected from 𝐺 (𝑢). Also, we can obtain
𝑝 (𝑣) following the same procedure.

(2) Vertex Group Sorting. Sort 𝑝 (𝑢) in ascending order of dis-
tance 𝑑 (𝑝 (𝑢)

𝑖
|𝐺 (𝑢, 𝑣)) which is defined as

𝑑 (𝑝 (𝑢)
𝑖

|𝐺 (𝑢, 𝑣)) =
𝐾∑
𝑗=0

𝐿𝑆𝑃

(
𝑝
(𝑢)
𝑖

(𝑗), 𝑣
)
. (2)

And we process 𝑝 (𝑣) in the same way. but with

𝑑 (𝑝 (𝑣)
𝑖

|𝐺 (𝑢, 𝑣)) =
𝐾∑
𝑗=0

𝐿𝑆𝑃

(
𝑝
(𝑣)
𝑖

(𝑗), 𝑢
)
. (3)

(3) Vertex Group Wiring. After sorting, we select the first
𝑁𝐻 groups from 𝑝 (𝑢) and 𝑝 (𝑣) , respectively. Given 𝑝 (𝑢)

𝑖
and

𝑝
(𝑢)
𝑗

, there exists an edge between them if
���𝑝 (𝑢)𝑖

∩ 𝑝 (𝑢)
𝑗

��� <���𝑝 (𝑢)𝑖

��� + ���𝑝 (𝑢)𝑗

���; Given 𝑝 (𝑢)𝑖
and 𝑝 (𝑣)

𝑖
, they are connected if

there is at least one pair of vertices
(
𝑝
(𝑢)
𝑖

(𝑗0), 𝑝 (𝑣)𝑖
(𝑗1)

)
is

connected on 𝐺 (𝑢, 𝑣).
Fig. 1 gives an example of 𝐻𝑆𝑁 (2)

𝑢,𝑣 construction with 𝑁𝑛𝑏 = 5,
𝐾 = 2 and 𝑁𝐻 = 2. The groups with small 𝑑 , such as (4, 5) and
(6, 7), are used for the construction of 𝐻𝑆𝑁 (2) , which enhances the
interactions between 𝐺 (𝑢) and 𝐺 (𝑣).

3.3 The HELP Model
After obtaining the neighborhood of (𝑢, 𝑣), we use an end-to-end
deep learning framework, namely HELP, to infer whether there

Hyper-Substructure Enhanced Link Predictor CIKM ’20, October 19–23, 2020, Virtual Event, Ireland

gF

GCNs

iterF

G(u,v) ,v vA X

,u uA X

,u vA

ue

ve

(2)
,u vHSN

One-channel Predictor

One-channel Predictor

h

0ŷ

1ŷ
ŷ

HSN Construction

Figure 2: The framework of HELP.

exists an edge between 𝑢 and 𝑣 or not. We introduce graph convo-
lution network (GCN) [4] into our framework to learning vertex
embeddings. One layer GCN is defined as

𝐺𝐶𝑁 (𝐴,𝑋) = 𝜎 (�̃�− 1
2 �̃��̃�− 1

2𝑋𝑊), (4)

where �̃� = 𝐴 + 𝐼 and �̃� is the normalized degree matrix.𝑊 is the
weight matrix and 𝜎 refers to the activation function. Here we use
𝜎 ≡ 𝑅𝑒𝐿𝑈 (·) =𝑚𝑎𝑥 (0, ·) in this paper.

The overall framework is given in Fig. 2. Given a network and
a vertex pair (𝑢, 𝑣), we process 𝐺 (𝑢), 𝐺 (𝑣) and the interactions
between them separately, instead of processing 𝐺 (𝑢, 𝑣) in its en-
tirety. We design a deep learning-based model, called one-channel
predictor, to deal with such input data. The one-channel predictor is
described in Eq. (5):

𝑒𝑢 = 𝐺𝐶𝑁𝑠 (�̃�𝑢 , 𝑋𝑢), 𝑒𝑣 = 𝐺𝐶𝑁𝑠 (�̃�𝑣, 𝑋𝑣)
𝑜𝑢 = 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 (𝑒𝑢), 𝑜𝑣 = 𝐹𝐿𝐴𝑇𝑇𝐸𝑁 (𝑒𝑣)
ℎ𝑢 = 𝐹𝑔 (𝑒𝑢), ℎ𝑣 = 𝐹𝑔 (𝑒𝑣)
ℎ𝑢×𝑣 = 𝐹𝑖𝑡𝑒𝑟 (𝐴𝑢×𝑣)
ℎ = 𝐶𝑂𝑁𝐶𝐴𝑇 (ℎ𝑢 , ℎ𝑣, ℎ𝑢×𝑣)
𝑦0 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑜𝑢𝑡ℎ + 𝑏),

(5)

where �̃�𝑢 and 𝑋𝑢 represent the normalized adjacency matrix and
the feature matrix of𝐺 (𝑢), respectively. One-channel predictor first
embeds the vertex in𝐺 (𝑢) and𝐺 (𝑣) with a 2-layer GCN separately
and then encoded with a multi-layer perception 𝐹𝑔 . As for 𝑒𝑢 and
𝑒𝑣 , they represent the vertex embeddings of𝐺 (𝑢) and𝐺 (𝑣), respec-
tively. And 𝑜𝑢 as the rows’ concatenation of 𝑒𝑢 denotes the embed-
ding vector of 𝐺 (𝑢) and so does 𝑜𝑣 . The interaction between 𝐺 (𝑢)
and𝐺 (𝑣), denoted by𝐴𝑢×𝑣 , is also encoded by 𝐹𝑖𝑡𝑒𝑟 . The prediction
result 𝑦0 is given by a softmax classifier. To integrate higher-order
structural features, we also make prediction on 𝐻𝑆𝑁 (2)

𝑢,𝑣 with one-
channel predictor and obtain the corresponding prediction result
𝑦1. The final result 𝑦 is given by

𝑦 =
1
2
(𝑦0 + 𝑦1). (6)

It’s worth noticing that we use the concatenation of 𝑒𝑢 and 𝑒𝑣
generated based on𝐺 (𝑢, 𝑣) as the features when we make inference
based on 𝐻𝑆𝑁 (2)

𝑢,𝑣 . And the framework can be easily extended with
higher-order HSN.

The objective function 𝐿𝑡𝑜𝑡𝑎𝑙 mainly contains two parts: cross-
entropy error 𝐿𝑐 and embedding similarity error 𝐿𝑠 . We minimize
KL-divergence to measure the similarity of 𝑜𝑢 and 𝑜𝑣 if there exists

Table 1: Basic statistics of the datasets.

ATC HP NS Cora Citeseer Power
𝑁 1,226 1,706 1,589 2,708 3,279 4,941
|𝐸 | 2,615 6,207 2,742 5,278 4,552 6,594
Type D D U U U U

U means undirected network and D refers to directed network.

an edge between 𝑢 and 𝑣 . 𝐿𝑡𝑜𝑡𝑎𝑙 is define as
𝐿𝑐 = −𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)

𝐿𝑠 =
1
𝑑

𝑑−1∑
𝑖=0

𝑦𝑖 (𝑜𝑢𝑖 log(𝑜
𝑢
𝑖) − 𝑜

𝑢
𝑖 log(𝑜

𝑣
𝑖))

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛾𝐿𝑐 + (1 − 𝛾)𝐿𝑠 + 𝛽𝐿𝑟𝑒𝑔 ,

(7)

where 𝛾 is the coefficient used for balancing 𝐿𝑐 and 𝐿𝑠 . 𝐿𝑟𝑒𝑔 repre-
sents 𝐿2 regularization term and 𝛽 is the weight decay coefficient.

4 EXPERIMENT
4.1 Datasets
We evaluate the proposed method on six benchmark datasets:

• ATC is a directed network of US Air transportation where
the vertices denote airports and the edges are flights.

• HP is a directed network of human protein interactions.
• NS is a scientist collaboration network where the vertices
are scientists and the edges reflect co-authorship.

• Cora and Citeseer are networks modeling citation relation-
ships between scientific papers.

• Power is an undirected network of power grid network
where a vertex either represents a generator, a transformer
or a substation and an edge is a power supply line.

The data are available online1 and the basic statistics are summa-
rized in Table 1.

4.2 Baselines
We compare the proposed method with five baselines, including
random walking-based algorithms and deep learning-based models.

• node2vec (N2V) [2] performs biased random walk on net-
works and learns vertex embeddings through skip-gram.

• SDNE [9] embeds vertices into lower dimensional space in
an auto-encoder-based framework.

• SEAL [10] is the abbreviation for learning from Subgraphs,
Embeddings and Attributes for Link prediction. In this paper,
we only focus on subgraphs but do not use other information.

• GGAE [7] with gravity-inspired decoder could reconstruct
directed graphs from a node embedding.

• SG uses one-channel predictor to perform link prediction
only based on 𝐺 (𝑢, 𝑣).

4.3 Experimental Settings
In the experiments, each dataset is split into training and testing
sets at the ratio of 4:1. Specifically, we choose 80% edges as positive
samples of training set and randomly sample the same number
1http://konect.cc/

CIKM ’20, October 19–23, 2020, Virtual Event, Ireland Jian Zhang, Jun Zheng, Jinyin Chen, and Qi Xuan

Table 2: Performance of link prediction (AUC)

Dataset N2V SDNE SEAL GGAE SG HELP
ATC 78.53 81.97 80.74 74.30 90.25 91.13
HP 89.72 85.86 88.94 88.56 87.93 89.52
NS 96.65 94.71 98.84 93.71 98.92 99.12

Power 59.20 58.07 83.99 74.67 86.03 88.38
Cora 72.26 69.96 91.81 84.64 91.67 92.91

Citeseer 69.93 71.09 87.54 86.38 85.88 88.02

Table 3: Performance of link prediction (AP)

Dataset N2V SDNE SEAL GGAE SG HELP
ATC 80.90 82.91 80.61 75.36 87.98 88.84
HP 90.42 86.77 89.22 89.17 90.13 90.60
NS 96.63 95.54 98.77 94.59 99.04 99.27

Power 59.21 60.71 86.03 79.49 87.29 88.55
Cora 72.41 73.46 92.98 86.66 92.99 94.04

Citeseer 69.64 74.97 88.74 87.47 86.12 90.93

of nonexistent training edges as negative training samples. The
remaining 20% edges are positive testing data and the same amount
of nonexistent edges are sampled as negative testing data.

As for the baselines, the embedding dimension of N2V is set to
128 and the optimal key parameters 𝑝 and 𝑞 are obtained through
grid search over {0.50, 0.75, 1.00, 1.25, 1.50}. Also, the same embed-
ding dimension is used when implementing SDNE. As for SEAL,
we use the default settings and set the hop to auto which means
1-hop or 2-hop subgraphs will be automatically selected to achieve
better performance. And GGAE also uses 128-dim latent vectors to
represent nodes. For the proposed HELP, we set 𝑁𝑛𝑏 = 𝑁𝐻 = 35 for
subgraph and𝐻𝑆𝑁 (2) construction and train HELP for 1000 epochs
at the learning rate of 3e-4. All the experiments are implemented
on the platform equipped with a Intel(R) Xeon E5-2678 CPU and a
NVIDIA GTX 1080Ti GPU.

4.4 Link prediction results
We employ AUC and AP as the metrics for evaluating the link
prediction performance of HELP as well as the baselines. All experi-
ments are conducted 10 times and average performance is reported
to avoid contingency. As reported in Table 2 and Table 3, HELP
outperforms other baselines in most cases considering both AUC
and AP, which shows the effectiveness and practicability of HELP.
Furthermore, N2V and SDNE have better performance on dense
networks (HP and NS) rather than sparse networks (Citeseer and
Power). SEAL, SG and HELP, however, behave relatively robust. It
is due to that only a part of vertices, i.e. the neighborhood, could
contribute to the prediction. N2V, SDNE and GGAE learn embed-
dings over the whole network are not always able to capture the
key features and thus introduce noises into embedding vectors.
SEAL, SG and HELP, however, make inference over the extracted
subgraphs, preventing the model from noises. Compared with SG,
the better performance of HELP validates that HSN could indeed
help link prediction.

0

2

4

6

8

10

12

14

16

In
fe
re
nc
e
T
im
e

︵m
s/
pe
r e
dg
e)

Dataset
ATC HP NS Cora Citeseer Power

N2V
SDNE
SEAL

HELP
SG
GGAE

Figure 3: Inference time of HELP on different datasets.

4.5 Runtime Analysis
Above results have shown the effectiveness of HELP. And the scal-
ability also matters. We show the inference time of a single vertex
pair of HELP as well as the baselines in Fig. 3. HELP is relatively
slower when making inference, while SDNE and GGAE are the
most efficient among the 6 methods. And GGAE runs fastest since
it makes prediction over the whole graph at once. Despite the inef-
ficiency, each inference of HELP still could finish in milliseconds.

5 CONCLUSION
In this paper, we present hyper-substructure enhanced link pre-
dictor (HELP) which performs link prediction over the neighbor-
hood of given vertex pair. Learning from subgraphs as well as their
higher-order structural informationmodeled by hyper-substructure
network (HSN), HELP outperforms other state-of-the-art baselines
which have been proved by extensive experiments. Our future re-
search will focus on optimizing the neighborhood normalization
and HSN construction process to further compress the runtime
without loss of accuracy.

ACKNOWLEDGMENTS
This work was partially supported by the National Natural Sci-
ence Foundation of China under Grant 61973273, and by the Zhe-
jiang Provincial Natural Science Foundation of China under Grant
LR19F030001.

REFERENCES
[1] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Martin Blais, Amol

Kapoor, Michal Lukasik, and Stephan Günnemann. 2019. Is PageRank All You
Need for Scalable Graph Neural Networks?. In Proceedings of the 15th MLG.

[2] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd SIGKDD. ACM, 855–864.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Proceedings of the 31st NeuralPS. 1024–1034.

[4] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of 5th ICLR. OpenReview.net.

[5] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey.
Physica A: statistical mechanics and its applications 390, 6 (2011), 1150–1170.

[6] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th SIGKDD. 701–710.

[7] Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet-Anh Tran, and
Michalis Vazirgiannis. 2019. Gravity-inspired graph autoencoders for directed
link prediction. In Proceedings of the 28th CIKM. 589–598.

[8] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of the
6th ICLR.

[9] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Em-
bedding. In Proceedings of the 22nd SIGKDD. ACM, 1225–1234.

[10] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural
Networks. In Proceedings of 32nd NeurIPS. 5171–5181.

	Abstract
	1 Introduction
	2 Problem definition
	3 Method
	3.1 Neighborhood Normalization
	3.2 HSN Construction
	3.3 The HELP Model

	4 Experiment
	4.1 Datasets
	4.2 Baselines
	4.3 Experimental Settings
	4.4 Link prediction results
	4.5 Runtime Analysis

	5 Conclusion
	Acknowledgments
	References

