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The country neighborhood network, where nodes represent countries and two nodes are considered linked if
the corresponding countries are neighbors on territory, is created and its giant component, the Asia, Europe,
and Africa �AEA� cluster, is carefully studied in this paper. It is found that, as common, the degree distribution
and the clustering function of the AEA cluster are both compatible with scale-free property, besides, the AEA
cluster presents a little disassortativity, and its near power-law country area-degree relationship with the
exponent close to 1.7 may imply a fractal dimension close to 1.2 of country borderlines in the AEA continent.
It is also revealed that the average difference of population density between two countries obeys an approxi-
mately increasing function of the shortest path length between them, which may suggest a gradual consensus
of population density in the AEA cluster. A simple unity rule is then adopted to model the AEA cluster and such
model explains the AEA cluster very well in most aspects, e.g., power-law domain area distribution and fractal
domain borderlines, etc., except that the network derived by the model has stronger disassortativity, which may
be explained by the fact that, in the evolution history of countries, unbalanced neighbors are more likely to be
united as one than balanced neighbors. Additionally, the network evolving process can be divided into three
periods, defined as formation period, growth period, and combination period, and there are indications that the
AEA cluster is in its third period.
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I. INTRODUCTION

Nowadays, more and more complex systems in various
areas, e.g., sociology �1–3�, technology �4–6�, and biology
�7,8�, are described as complex networks. Interestingly,
many of them share some similar network properties �9,10�,
e.g., scale-free property P�k��k−� characterizing a very het-
erogeneous degree distribution and power-law clustering
function C�k��k−� suggesting a hierarchical and modular
structure in some situations �7,8,11,12�. Scale-free networks
�1,9–14� are always modeled by adopting the preferential
attachment �PA� and the growth rules first proposed by
Barabási and Albert �1�. Of cause, such scale-free property
also can be derived by other mechanisms. For instance, New-
man et al. �15� provided a statistical mechanism to generate
random networks with arbitrary degree distributions. Cal-
darelli et al. �16� presented a fitness model, where each node
is associated with a fitness, and such model could generate
power-law degree distributions for various fitness distribu-
tions and attaching rules. Recently, Xuan et al. �17� pointed
out that compelled cooperation in the networks lack of re-
sources could be another way to such heterogeneous degree
distribution. Meanwhile, the power-law clustering function
can be easily explained by introducing local-world restric-
tions into the complex network models �12–14�.

More or less, the evolutions of many real-world complex
networks are influenced by many geographical factors, and
the most direct factor may be the partition of the administra-
tive organizations, e.g., countries, provinces, cities, villages
and so on �12�. In fact, many worldwide complex networks,
such as worldwide trade network �3�, worldwide routing net-

work �4�, international air transportation network �5�, and so
on, are attached on the basic layered worldwide network, i.e.,
country neighborhood network �CNN�, where nodes repre-
sent countries and two nodes are considered linked if the
corresponding countries are neighbors on territory. In the
same way, those nationwide complex networks �6� may also
be attached on the province neighborhood network, and so
on. Studying this type of geographical networks is of much
importance not only because they determine the structure of
many other complex networks attached on them for a certain
extent, but also with the reason that understanding the evo-
lutions of these geographical networks itself has its notable
sociological significance, e.g., natural population migration
as well as the consequent convention and religion communi-
cations always occurs between linked �neighbored� coun-
tries.

In this paper, the world map �18,19� is transferred to the
CNN, and the Asia, Europe and Africa �AEA� continent and
the America continent form the top two largest clusters in the
CNN. Experiential studies show that both the AEA cluster
and the America cluster have no small-world property just
because they have quite long average shortest path length �L�
for their relatively small size although both of them have
much large average clustering coefficient �C�. Furthermore,
it seems that the degree distribution and the clustering func-
tion of the giant component of the CNN are both compatible
with scale-free property, which is consistent with many other
reported complex networks �9,10�, although the evidence is
not so sufficient due to the small number of nodes in the
AEA cluster. At the same time, the AEA cluster presents a
little disassortativity �9,10�. Besides, the formation of coun-
tries on the AEA continent can be generalized to a surface
partition problem which is also of many physical interests
�20,21�. In this paper, it is shown that the country area dis-
tribution, as well as the relationship between the area of a
country and the degree of the corresponding node, also pre-
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sents a scale-free property, and the power-law exponent of
the latter is close to 1.7, a little smaller than 2, may imply a
fractal dimension close to 2 /1.7=1.2 of country borderlines
in the AEA continent. Coincidentally, the coastline of the
Africa was also found to possess a fractal dimension close to
1.2 �22�. More interestingly, the average difference of popu-
lation density between two countries obeys an approximately
increasing function of the shortest path length between them
may suggest a gradual consensus �23� of population density
in the AEA cluster.

Although lots of existing network models can explain
these properties very well �8,9,11–14�, they cannot exhibit
the reasonable evolution mechanism of the CNN. The Geo-
Sim model �24� can simulate the evolution of countries of
many details, however, it seems too complicated with a net-
work view to be theoretically analyzed and generalized to
other related areas. In fact, with the improvement of the tech-
nology and the spread of the civilization, unity, other than
division or growth, dominates the AEA continent in the his-
tory and hence is adopted to model the CNN in this paper.
Thus the principle of our model is very simple, while the
resulting network derived by the model indeed has similar
properties as those of the AEA cluster, i.e., large average
clustering coefficient, similar degree distribution and cluster-
ing function, power-law domain area distribution, and fractal
domain borderlines. Besides, the average difference of area
between two domains also obeys a similar approximately
decreasing function of the shortest path length between them.
However, the network derived by the model has much
smaller average shortest path length than the AEA cluster,
which is mainly because the model does not take the com-
plex geographical condition of the AEA continent into ac-
count. The fact is that Africa is connected to Asia and Europe
through a narrow chain, composed by Egypt, Israel, Pales-
tine, Jordan, Lebanon, Syria, and Iraq, which must largely
increase the average shortest path length of the AEA cluster.
Further analysis shows that the whole evolving process of
the model can be divided into three periods, i.e., formation
period, growth period, and combination period, where the
network behaves totally different. Also the existence of the
large area countries, e.g., Russia and China, in the AEA con-
tinent may suggest that the AEA cluster is in its combination
period.

Based on the fact that unity happens frequently in many
real-world complex systems, the modeling mechanism pro-
vided in this paper can be generalized to model many other
real-world complex networks in higher dimensional evolving
spaces. For example, the model can successfully explain the
power-law file size distribution through a positive feedback
mechanism: the neighboring files, i.e., sharing similar topics,
ideas, or contents, are more likely to be united in the future,
and the larger size of the united file will allow it to hold more
neighboring files, and so forth, which is very similar to the
multiplicative process introduced by Mitzenmacher �25�. The
rest of the paper is organized as follows. In Sec. II, the coun-
try neighborhood network is provided and several of its
properties are calculated. A simple model for the CNN based
on the principle of unity is then proposed in Sec. III, where
several properties of a network derived by the model, with
similar size as that of the AEA cluster, are calculated to be

compared with those of the AEA cluster. In Sec. IV, the
model is analyzed both numerically and theoretically. Fi-
nally, the work is summarized in Sec. V.

II. EXPERIENTIAL ANALYSIS OF THE CNN

There are lots of countries having no neighbors on terri-
tory, i.e., Japan, England, and most countries in the Oceania.
In fact, these single countries may indeed have neighbors if
considering their marginal sea, which, however, does not be-
long to the scope of this paper. With the reason that the AEA
continent and the America continent are the top two largest
continents and at the same time form the top two largest
clusters in the CNN, they are selected to be studied in this
paper.

The AEA continent contains 130 countries �single coun-
tries, e.g., islands, are excluded�. So the largest cluster of the
CNN, named as AEA cluster, has 130 nodes, similarly, the
America cluster has 24 nodes. Their structural maps are
shown in Fig. 1 and Fig. 2, respectively. Meanwhile, some

FIG. 1. �Color online� The structural map of the AEA cluster in
the CNN.

FIG. 2. �Color online� The structural map of the America cluster
in the CNN.
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classical network properties, i.e., the number of nodes N, the
number of edges E, the average degree �k�, the average clus-
tering coefficient �C�, and the average shortest path length
�L�, of these two clusters are summarized in Table I, where it
is shown that both of these two clusters have no small-world
property just because they have quite long average shortest
path length �L� for their relatively small size although both
of them have much large average clustering coefficient �C�.

Because the AEA cluster evolves in a low-dimensional
space �d=2� and contains a tiny number of nodes �N=130�,
its maximum node degree is quite small, i.e., kmax=14. As a
result, there will be little evidence to claim that some distri-
bution related to degree k follows a certain distribution form,
though it seems that the degree distribution P�k� of the AEA
cluster shown in Fig. 3�a� is indeed compatible with the
scale-free property, which is coincident with many other
worldwide complex networks �3–5�. The AEA cluster shown
in Fig. 3�b� is lightly disassortative, suggesting that the nodes
with similar degree are a little more unlikely to be connected
with each other in the AEA cluster.

The clustering function C�k� of the AEA cluster denoting
the average clustering coefficient C on the nodes with degree
k, shown in Fig. 3�c�, is also compatible with the scale-free
property, i.e., C�k��k−�. Power-law clustering function is

always considered to suggest a hierarchical and modular
structure in many other real-world complex networks
�7,8,11,12�, in the CNN, however, such characteristic will be
given another more visually explanation based on its geo-
metrical essence. In fact, averagely speaking, in a
d-dimensional Euclidean space, the neighbors of a domain
will be arranged around its surface in order, as is shown in
Fig. 4. So intuitively, the number of links between the neigh-
bors of a node i, defined as ei, will be directly proportional to
its degree ki. Then the clustering coefficient of the node i can
be calculated by Eq. �1�,

TABLE I. Several classical network properties, i.e., the number
of nodes N, the number of edges E, the average degree �k�, the
average clustering coefficient �C�, and the average shortest path
length �L�, of the AEA cluster, the America cluster, and the network
derived by the model with parameters n=40 and T=1470.

Clusters N E �k� �C� �L�

AEA 130 276 4.25 0.52 6.70

America 24 38 3.17 0.49 4.49

Model 130 308 4.74 0.54 4.41
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FIG. 3. �Color online� �a� The degree distributions, �b� the degree correlation functions, �c� the clustering functions, and �d� the country
�domain� areas as the functions A�k� �104 km2� of the degree k for the AEA cluster in the CNN as well as the network derived by the model
with the same number of nodes, i.e., the parameters of the model are set to be n=40 and T=1470. It should be noted that, in order to better
compare with the AEA cluster, the square in the model is considered to have the same area as the AEA continent, i.e., the sum of the areas
of all the 130 countries equaling to about 8375.9 �104 km2�. The model fits the real data very well almost everywhere except that the
network derived by the model presents a little more disassortativity than the AEA cluster.
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C�ki� =
2ei

ki�ki − 1�
�

ki

ki�ki − 1�
�

1

ki
, �1�

which indeed possesses a scale-free property with the abso-
lute value of the power-law exponent �=1.

Statistically, in a d-dimensional Euclidean space, the rela-
tionship between the volume Vi and the surface area Si of a
domain �node� i always follows Eq. �2�,

Vi
1/dv � Si

1/ds, �2�

where ds denotes the fractal dimension of the surface and dv
denotes the fractal dimension of the volume satisfying that
ds�dv�d �22�. For the AEA cluster discussed in this paper,
each country and even the AEA continent are both space
filling, i.e., dv=d=2 must be satisfied. Then it can be ex-
pected that, in the AEA cluster, although there is slight de-
gree correlation between nodes, the relationship between the
area Ai of country i and the degree ki of the corresponding
node follows Eq. �3�,

Ai � Bi
2/ds � ki

�, �3�

where the exponent is �=2 /ds with the fractal dimension
ds� �1,2� of the borderline. In fact, such relationship be-
tween the country area and node degree in the AEA cluster is
shown in Fig. 3�d� and almost satisfies A�k��k� with the
exponent �=1.7. This finding may inversely suggest that,
statistically, the fractal dimension of country borderlines in
the AEA continent is close to 1.2.

Besides these network characteristics, each node in the
AEA cluster, as a country, has its nonstructural properties
�19�, e.g., area, population density, and so on. It is also very
interesting to study the network correlations of these non-
structural properties, e.g., to reveal if two linked nodes pos-
sess similar areas or similar population densities. Denoting
the difference of area between two nodes i and j by
DA�i , j�= �A�i�−A�j��, the difference of population density
between two nodes i and j by DPD�i , j�= �PD�i�− PD�j��,
then the average difference of area between linked nodes or
nonlinked nodes and the average difference of population

density between linked nodes or nonlinked nodes can be cal-
culated by Eqs. �4�–�7�, respectively,

DA
1 =

1

NE
	
i=2

N

	
j=1

i−1

DA�i, j�E�i, j� , �4�

DA
0 =

2

N�N − 1� − 2NE
	
i=2

N

	
j=1

i−1

DA�i, j��1 − E�i, j�� , �5�

DPD
1 =

1

NE
	
i=2

N

	
j=1

i−1

DPD�i, j�E�i, j� , �6�

DPD
0 =

2

N�N − 1� − 2NE
	
i=2

N

	
j=1

i−1

DPD�i, j��1 − E�i, j�� , �7�

where NE represents the number of links in the AEA cluster,
and E�i , j�=1 if nodes i and j are linked while E�i , j�=0
otherwise. In the AEA cluster, DA

1 =179.5�104 km2��DA
0

=92.4�104 km2� indicates that countries with larger differ-
ence of area are more likely to be linked, which is consistent
with the disassortative property of the AEA cluster, while
DPD

1 =148.9�person /km2��DPD
0 =428.4�person /km2�, how-

ever, suggests that linked countries have closer population
densities than those of nonlinked countries, which may be
caused by the similar policies, conventions, and religions, as
well as the natural population migration, between the linked
countries.

Moreover, the average difference of area and the average
difference of population density between two nodes with the
shortest path length equal to L can be calculated by Eq. �8�
and Eq. �9�, respectively,

DA�L� =
1

NL
	
i=2

N

	
j=1

i−1

DA�i, j�EL�i, j� , �8�

DPD�L� =
1

NL
	
i=2

N

	
j=1

i−1

DPD�i, j�EL�i, j� , �9�

where NL represents the number of pairs of nodes with the
shortest path length equal to L, and EL�i , j�=1 if the shortest
path length between the nodes i and j is equal to L while
EL�i , j�=0 otherwise. Then the network correlations of areas
and population densities of countries could be presented
more quantitatively in Figs. 5�a� and 5�b�, where it is shown
that longer shortest path length between two countries al-
ways means a smaller difference of area but a larger differ-
ence of population density between them. More interestingly,
in these two figures, it is clearly shown that DA�L� and
DPD�L� both behave abnormally when 7�L�11, unfortu-
nately, there still lacks a reasonable explanation for such phe-
nomenon. At the same time, it should be noted that the val-
ues of DA�L� and DPD�L� are less reliable when L�14
because there are only a very small number of pairs of coun-
tries with the shortest path length larger than 14.

FIG. 4. �Color online� A depiction to describe the relationship
between the local clustering coefficient C�ki� of a node i and its
degree ki.

QI XUAN AND TIE-JUN WU PHYSICAL REVIEW E 79, 046106 �2009�

046106-4



III. MODEL

The evolution of countries in the world could be modeled
by a specific multiagent system, i.e., the GeoSim model �24�,
of many details. For example, a country in the GeoSim
model contains two different types of provinces, i.e., a capi-
tal and other normal provinces, and the complex resource
allocation and competition mechanism determines the result
of the warfare between two neighbored countries, then terri-
torial changes occur, i.e., a country may win or lose one or
more provinces, which may further lead to a structural
change in the CNN. Such a detailed model could well ex-
plain some special events in the human history, e.g., power-
law war-size distribution �24�. However, the complicated
mechanism also makes it difficult to be theoretically ana-
lyzed and generalized to other related areas.

In the GeoSim model, the increment �decrement� of terri-
tory always means the focused country gains more neighbors
�loses some of its neighbors�, as a result, when the structure
of the CNN is mainly focused in this paper, the modeling
process of the GeoSim model could be remarkably simplified
with a network view �17�. More macroscopically, as an im-
memorial aphorism says “being united for long must be di-
vided, and being divided for long must be united” �26�, the
evolution of the CNN could be modeled by two simple op-
erators, i.e., unity and division. Moreover, as the improve-
ment of the technology and the spread of the civilization,
unity dominates the AEA continent historically, e.g., Chinese
history shows a continuously evolution with national unity as
the dominant power from Spring and Autumn Period time
�BC 770–476� to Qing dynasty �1616–1912� �27�, i.e., al-
though the country experienced three social divisions in his-
tory, it eventually moved toward Qin, Han, Sui, Tang, Yuan,
Ming, and Qing unifications with an approximately incre-
ment of territory. Therefore, in this paper, we would like to
propose a general network model for CNN just by adopting
the principle of the second part of the aphorism. Different
from the GeoSim model, such a simple network model not
only can explain most of the statistical properties of the AEA
cluster very well, but also can be easily generalized to ex-

plain the similar phenomena, e.g., the power-law file size
distribution, in other areas. The modeling process is intro-
duced as follows:

�i� Initialization: a square is divided into n�n grids, as is
shown in Fig. 6�a�, named as domains in this paper. With a
network view, as is shown in Fig. 6�b�, each domain is rep-
resented by a node, and two nodes are linked if their corre-
sponding domains are neighbors.

�ii� Unity: at each time, a domain is randomly selected as
the hot domain, and one of its neighbors is randomly selected
as the affected domain, then they are united as one domain.
With the network language, that is, the total number of the
nodes in the network will decrease by 1, and the new node
will possess all the neighbors that its parents �the nodes rep-
resenting the hot domain and the affected domain� have had.

�iii� Termination: after T times, the process is terminated.
For example, with the initial states presented in Fig. 6, after
T=80 times uniting, the resulting domains and the corre-
sponding network are shown in Figs. 7�a� and 7�b�, respec-
tively, where the grids marked the same number belongs to
the same domain.

To get a network with the similar size as that of the AEA
cluster, the parameters of the model are set to be n=40 and
T=1470, then the number of nodes in the resulting network
will be N=130. The structure of the resulting network with
130 nodes and 308 links is shown in Fig. 8, and some of its
statistical characteristics are presented in Table I. Comparing
the AEA cluster and the network derived by the model in
Table I, it can be found that they are very similar on almost
all of these structural properties except the average shortest
path length �L�, i.e., the average shortest path length of the
network derived by the model is much smaller than that of
the AEA cluster. This exception is mainly because the initial
network in the model is a regular two-dimensional lattice
without taking the complex geographical condition of the
AEA continent into account. In fact, the world map clearly
shows that Africa is connected to Asia and Europe through a
narrow chain, composed of Egypt, Israel, Palestine, Jordan,
Lebanon, Syria, and Iraq, which is reflected in Fig. 1, and
such special geographical condition for sure largely increases
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FIG. 5. �Color online� �a� The average difference of area between two nodes, i.e., DA�L� �104 km2�, as a function of the shortest path
length equal to L between them for the AEA cluster in the CNN as well as the network derived by the model with the same number of nodes,
i.e., the parameters of the model are set to be n=40 and T=1470. Similarly, the square in the model is considered to have the same area as
the AEA continent. �b� The average difference of population density between two nodes, i.e., DPD�L� �person /km2�, as a function of the
shortest path length equal to L between them for the AEA cluster in the CNN.
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the average shortest path length �L� of the AEA cluster.
Furthermore, the network derived by the model has simi-

lar degree distribution, clustering function, and domain area-
degree relationship �the area of a grid in the model is set to
be 8375.9 /1600=5.2�104 km2� in order to better compare
with the AEA cluster� as those of the AEA cluster, as is
shown in Figs. 3�a�, 3�c�, and 3�d�, respectively. At the same
time, as is in the AEA cluster, the average difference of area
between two domains derived by the model obeys a similar
approximately decreasing function of the shortest path length
between them, which is shown in Fig. 5. The only exception
is that the network derived by the model presents a little
more disassortativity than the AEA cluster, as is shown in
Fig. 3�b�, and a reasonable explanation of such exception
may be that, in the evolution history of countries, unbalanced
neighbors are always more likely to be united as one than
balanced neighbors. With a network language, in a more pre-

cise CNN model, the unity probability of the two linked
nodes should be proportional to the gap between their de-
grees �or their domain areas�, which, not adopted in this
model, obviously can largely reduce the disassortativity of
the network.

Computer simulations also show that the small maximum
degree of the AEA cluster is mainly caused by its quite low-
dimensional evolving space �d=2�, as we can see in Fig. 9,
the maximum degrees of the networks derived by the model
with various n=40,50,60,70 at different evolving phases 	
=T /n2 keep a relatively low level, i.e., kmax
35, all the time,
and there lacks of evidence that this value will increase as
the grid scale �=1 /n is further reduced. Naturally, consider-
ing that the network evolving in the one-dimensional space
has the maximum degree strictly equaling to 2, which is even
much smaller than that of the network evolves in the two-
dimensional space, it will be logical to infer that the model
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FIG. 6. �a� A square is divided into 10�10 domains. �b� The corresponding network where each domain is represented by a node and
two nodes are linked if their corresponding domains are neighbors.
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FIG. 7. �Color online� �a� The domains after T=80 times uniting, the grids marked by the same number belongs to the same domain. �b�
The corresponding network, where each domain is represented by a node and two nodes are linked if their corresponding domains are
neighbors.
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can explain the power-law distributions more appropriately
in a higher dimensional evolving space.

The country area distribution on the AEA continent also
presents a scale-free property, described by Eq. �10�,

P�A � S� � − � ln S ⇒ P�A� � �A−1, �10�

after excluding the countries with extra small area less than 1
�104 km2�, and this property can be well explained by the
model through selecting appropriate grid scale �=1 /n, i.e.,
n=70, as is shown in Fig. 10. Meanwhile, in order to better
understand the fractal essence of the country borderlines, the
relationship between the number N� of line segments with
length � needed to cover the domain borderlines of the net-
work with a fixed number N=130 of nodes derived by the
model and the gird scale �=1 /n is presented in Fig. 11. The
power-law function N���−1.3 in this figure suggests that the
domain borderlines of the networks derived by the model
have fractal dimension close to 1.3 as long as the grid scale
� is sufficiently small. This value is very close to the fractal
dimension of the country borderlines on the AEA continent
calculated by Eq. �3�.

IV. MODEL ANALYSIS

The modeling process introduced in the last section shows
that the structure of the resulting network derived by the

model can be influenced by three parameters, i.e., the dimen-
sion d of the evolving space, the size n of the initial lattice,
and the evolving time T. For example, the average degree �k�
will be much larger and the average shortest path length �L�
will be much shorter in an evolving space with higher di-
mension d. The network structural properties will be greatly
changed as the network evolves �at different evolving time
T�, e.g., as is shown in the last section, compared with the
initial lattice, the resulting network has totally different
structural properties and the size n of the initial lattice must
be large enough to present the whole evolving process.

Although all of these three parameters are needed to de-
termine a network in the model, the evolving time T seems to
be the key factor to the structural properties of the resulting

FIG. 8. �Color online� The structural map of the network de-
rived by the model with parameters n=40 and T=1470.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

τ=T/n2

k m
ax

n=40
n=50
n=60
n=70

FIG. 9. �Color online� The maximum degrees kmax of the net-
works derived by the model with various n=40,50,60,70 at differ-
ent evolving phases 	=T /n2.
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FIG. 10. �Color online� The domain �country� area cumulative
distributions for the AEA cluster excluding the countries with area
less than 1 �104 km2� and the four networks derived by the model
with different parameters n=40,50,60,70 and T
=1470,2370,3470,4770, respectively, as a result, these networks
have the same number of nodes, i.e., N=130. Similarly, the total
area of the square in the model is set to be 8375.9 �104 km2�. All of
these cumulative distributions follow P�A�S��−� ln S suggesting
that the domain area distributions of these networks possess the
same scale-free property, i.e., P�A���A−1.
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FIG. 11. �Color online� The number N� of line segments with
length � needed to cover the domain borderlines of the network
with a fixed number N of nodes derived by the model as a function
of the gird scale �=1 /n. To compare with the AEA cluster, the
number of nodes �domains� is set to be N=130, and the power-law
function N���−1.3 shown in this figure suggests that the domain
borderlines of the networks derived by the model have fractal di-
mension close to 1.3 as long as the grid scale � is sufficiently small.
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network. So in this section, the dimension d of the evolving
space and the size n of the initial lattice are both fixed, and
we mainly focus on the changes of the structural properties
of the networks at different evolving time.

As the network evolves, the trends of several network
statistical properties, i.e., the average degree �k�, the average
clustering coefficient �C�, the average shortest path length
�L�, and the maximum domain area Amax are shown in Figs.
12�a�–12�d�, respectively, where 	=T /n2 denotes the phase
of the evolving process. By analyzing these trends and re-
viewing the modeling details, it is found that there are three
prominent periods divided by two critical points, i.e., 	1

0.3 and 	2
0.7, in the evolving process of the network.
The three periods, respectively, named as formation period,
growth period, and combination period are described as fol-
lowing three subsections.

A. Formation period (�
�1)

In this beginning period, there are lots of minimum grid
cells in the square, as is shown in Fig. 6�a�, so in this period,
lots of domains with small area but larger than the minimum
grid cell will be formed by uniting these minimum grid cells,
and naturally, there lacks of domains with large area, as is
shown in Fig. 12�d�, and the average maximum domain area
of the networks in this period is close to 5.

In this period, the average degree �k�t�� at evolving time t
approximately satisfies Eq. �11�,

�N0 − t��k�t�� 
 �N0 − t + 1��k�t − 1�� − 2, �11�

with the reason that always only one link disappears when
unity happens at each time in this period. Equation �11� then
can be easily transformed to a differential equation as Eq.
�12�,

d�k�
dt



�k� − 2

N0 − t
, �12�

with the initial state �k�0��
4. Then the trend of the average
degree �k� as the network evolves can be calculated by Eq.
�13�,

�k� 
 2 +
2N0

N0 − t
= 2 +

2

1 − 	
. �13�

When 	 is much smaller, Eq. �13� can be approximated by
Eq. �14�,

�k� � 2 + 2�1 + 	� = 4 + 2	 . �14�

Equation �14� shows that the average degree �k� will ap-
proximately linearly increase with the rate close to 2 as the
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FIG. 12. �Color online� The trends of several network statistical properties as the network evolves where the evolving time T is
normalized by 	=T /n2 denoting the phase of the evolving process. �a� The trend of the average degree �k� as the network evolves. �b� The
trend of the average clustering coefficient �C� as the network evolves. �c� The trend of the average shortest path length �L� as the network
evolves. �d� The trend of the maximum domain area Amax as the network evolves. Each figure is divided into three sections, denoting
formation period, growth period, and combination period, respectively, from left to right, by two vertical dash lines.
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network evolves, which is verified by the numerical simula-
tion shown in Fig. 12�a� with a little smaller rate close to 1.8.

Similarly, in this period, with the reason that the total
increment of the clustering coefficient in a lattice at each
time close to 4�1 /6+2 /15=0.8, the differential equation of
the average clustering coefficient �C� can be approximated
by Eq. �15�,

d�C�
dt



�C� + 0.8

N0 − t
. �15�

Then the trend of the average clustering coefficient �C� as
the network evolves can be approximated by Eq. �16�,

�C� 

0.8

1 − 	
− 0.8 � 0.8	 , �16�

which is verified by the numerical simulation shown in Fig.
12�b� with a little smaller increasing rate close to 0.65.

Statistically, each node in a regular lattice can be a part of
the shortest paths between vast pairs of other nodes. As a
result, in this period, the unity of two randomly selected
linked nodes will obviously dramatically decrease the aver-
age shortest path length �L�, as is shown in Fig. 12�c�.

B. Growth period (�1
�
�2)

After the formation period, the square is full of small area
domains �a little larger than minimum grid cell� as well as
minimum grid cells. Therefore, as the network evolves for
the further step, the unities between small area domains
formed in the first period and those remaining minimum grid
cells will dominate the evolving process, and thereby this
period is named as the growth period of these small area
domains. Generally, in this period, the area of domains in-
creases steadily, as is shown in Fig. 12�d�. In fact, the aver-
age maximum domain area of the networks in this period is
close to 15, much larger than that of the first period.

At the same time, as is shown in Figs. 12�a� and 12�b�, the
increasing rates of the average degree and the average clus-
tering coefficient will be both reduced due to the fact that
there are considerable number of triangles in the network of
this period, i.e., in such networks, statistically, more than one
link will disappear when two nodes are united and the total
increment of the clustering coefficient will also be much
smaller than that in a lattice. Furthermore, after the first pe-
riod, there are a large number of small area domains, as a
result, the influence of the unity between a small area domain
and a minimum grid cell on the average shortest path length
is localized, so the decrease rate of the average shortest path
length will also be reduced in this period, as is shown in Fig.
12�c�.

C. Combination period (���2)

After the growth period, there are more small area do-
mains and several medium area domains are also formed,
while the number of the minimum grid cells decrease ulteri-
orly, as a result, many of these small or medium area

domains will adjoin with each other. So a notable character-
istic in this period is that large area domains appear by com-
bining those adjoined small and medium area domains; ac-
cordingly, this period is named as combination period. Figure
12�d� shows that, in this period, the maximum domain area
of the network increases very fast as the network evolves,
i.e., from 24 at phase 	=0.72 to 66 at phase 	=0.84, and
ultimately to 225 at phase 	=0.97. Naturally, the existence of
the large area countries, e.g., Russia and China, in the AEA
continent may suggest that the AEA cluster is in its combi-
nation period.

Intuitively, more links will disappear when two larger area
domains are combined, as a result, the appearance of the
large area domains will finally largely decrease the average
degree of the network, as is shown in Fig. 12�a�. However,
the appearance of the large area domains, on the other hand,
will largely increase the compactness between different ar-
eas, i.e., in this period, the average clustering coefficient of
the network increases even faster while its average shortest
path length decreases faster than that in the growth period, as
is shown in Figs. 12�b� and 12�c�.

V. SUMMARY

In this paper, the giant component of the country neigh-
borhood network �CNN�, i.e., the Asia, Europe and Africa
�AEA� cluster, is carefully analyzed. The structure of the
CNN is of much sociological importance with the fact that
natural population migration occurs frequently between
neighbored countries, which could be partially confirmed by
the network correlation of the population densities of coun-
tries in the AEA cluster. Then a geometrical model is pro-
posed to explain its statistical properties, e.g., large average
clustering coefficient, power-law domain area distribution,
fractal domain borderlines, and so on. More interestingly, the
network description of the AEA continent may provide a new
statistical method to calculate the fractal dimension of its
country borderlines by analyzing the relationship between
the area of a country and the degree of the corresponding
node, i.e., the near power-law country area-degree relation-
ship of the AEA cluster with the exponent close to 1.7 may
imply a fractal dimension close to 1.2 of country borderlines
in the AEA continent. Generally, the network evolving pro-
cess can be divided into three periods, defined as formation
period, growth period, and combination period, and the ex-
istence of the large area countries, e.g., Russia and China, in
the AEA continent may suggest that the AEA cluster is in its
combination period.

However, many aspects of the model need to be improved
in the future. For example, in order to provide a more general
model, the complex geographical condition on the AEA con-
tinent, e.g., Africa is connected to Asia and Europe through a
narrow chain, is not considered in this paper, as a result, the
average shortest path length �L� predicted by the model is
much smaller than that of the AEA cluster. Also the fact that,
in the evolution history of countries, unbalanced neighbors
are more likely to be united as one than balanced neighbors
is also not expressed in the model, which results that the
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network derived by the model has much stronger disassorta-
tivity than that of the AEA cluster. Besides, the influence of
the dimension of the evolving space on the structural prop-
erties of the resulting network also belongs to our future
works. Naturally, the network derived by the model in a
higher dimensional space will for sure have a broader degree
scaling, i.e., the model proposed in this paper would explain
the power-law distributions more appropriately in a higher
dimensional evolving space.
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