Consensus for second-order agent dynamics with velocity estimators via pinning control

Hong-xiang Hu1, Wenwu Yu2,3, Qi Xuan4, Li Yu4, Guangming Xie5

1Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
2School of Electrical and Computer Engineering, RMIT University, Melbourne, Vic. 3001, Australia
3Department of Mathematics, Southeast University, Nanjing 210096, People’s Republic of China
4Zhejiang Provincial United Key Laboratory of Embedded Systems, Department of Automation, Zhejiang University of Technology, Hangzhou 310023, People’s Republic of China
5Center for Systems and Control, State Key Laboratory of Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, People’s Republic of China

E-mail: kukunan911@gmail.com

Abstract: A consensus problem is investigated for a group of second-order agents with an active leader where the velocity of the leader cannot be measured, and the leader as well as all the agents is governed by the same non-linear intrinsic dynamics. To achieve consensus in the sense of both position and velocity, a neighbour-based estimator design approach and a pinning-controlled algorithm are proposed for each autonomous agent. It is found that all the agents in the group can follow the leader, and the velocity tracking errors of estimators converge to zero asymptotically, without assuming that the interaction topology is strongly connected or contains a directed spanning tree. In terms of the switching topologies between the leader and the followers, similar results are obtained. Finally, these theoretical results are demonstrated by the numerical simulations.

1 Introduction

Over the past few years, the consensus problem of multi-agent systems has attracted much attention from the researchers of different areas, including system control theory, statistical physics, biology, applied mathematics and computer science [1–5]. Generally, the main objective of consensus problem is to design an appropriate algorithm or interaction rule such that a group of agents converges to a consistent quantity of interest. Research on the consensus problem of multi-agent systems not only helps engineers better understand the mechanisms of natural collective phenomena, such as avoiding predators and increasing the chance of finding food, but also provides useful ideas for developing formation control, distributed cooperative control and coordination of multiple mobile autonomous agents/robots [6–8].

The individuals in many practical systems, especially in mechanical systems, usually have second-order dynamics, where the aim is to guide all the agents to move with the same velocity and converge to the same position. For example, Yu et al. [9] studied some necessary and sufficient conditions for second-order consensus in directed networks containing a directed spanning tree. It was proved that both the real and imaginary parts of the eigenvalues of the Laplacian matrix of the communication graph play key roles in reaching consensus [9]. Qin et al. [10] investigated two kinds of second-order consensus strategies for multi-vehicle systems with a time-varying reference velocity under directed communication topology, and it was shown that all the vehicles can reach consensus even though the dynamically changing interaction topology may not have a globally reachable node. Furthermore, Xie and Wang [11] investigated the consensus problem of second-order agents with switching topologies and established a linear consensus protocol for solving such a consensus problem. Recently, Zheng et al. [12] considered the consensus problem of heterogeneous multi-agent system composed of first-order and second-order agents, for which the consensus protocols have both position and velocity information. Wen et al. [13] studied the second-order consensus problem with communication constraints, where each agent is assumed to share information only with its neighbours at some disconnected time intervals, which is then solved by a novel protocol with synchronous intermittent information feedback.

In the nature, the agents always have certain purposes such as achieving the desired common speed and heading, or arriving at a desired destination, which give rise to an interesting and important topic of leader–follower approach. In this approach, either an agent is chosen or a virtual one is designed as the leader, whose movement is constrained by a predefined trajectory. Then, the remaining agents track the leader according to some appropriate controllers [14–17]. In order to reduce the number of controllers, a natural approach is to control a multi-agent system by pinning a small fraction of agents, known as the pinning control scheme [18–22].
For instance, Grigoriev et al. [18] studied the pinning control of spatiotemporal chaos, and then Parekh et al. [19] investigated the global and local control of spatiotemporal chaos in coupled map lattices. Moreover, Wang and Chen [20] applied the pinning control to a scale-free dynamical network, where it was shown that the number of controllers can be significantly reduced by pinning the nodes with large degree. Yu et al. [21] studied some technical problems of the pinning control scheme, and found that the nodes with low degrees should be pinned first when the coupling strength is small. Recently, Qin et al. [22] investigated the pinning control of complex networks under arbitrary topological structures with a special focus on the case with directed graph topology, where it was found that the pinning control of complex networks relies totally on the way to pin the nodes as long as the coupling strength is large enough, and the entire network can consensus exponentially fast. In many cases, some variables of the leader can only be estimated rather than directly measured. As a result, distributed estimation has become an important topic in the study of multi-agent systems, which has potential applications in the areas of sensor networks and robot networks. Recently, Hong et al. [23] designed a neighbour-based state-estimator for each autonomous agent to track the active leader with changing and unmeasurable states. Peng and Wang [24] also designed an estimator for each agent to estimate the leader’s velocity in the presence of time-varying delays.

Compared with [17], this paper also investigates a second-order leader–follower consensus of non-linear multi-agent systems with all the agents, including the leader governed by the same more complicated intrinsic dynamics. The main differences between our paper and [17] include: First, here we suppose that an agent knows the position, but not the velocity, of the leader if they are connected, which is more realistic in many cases. Thus, we need to design a velocity estimator for each agent, based on which a pinning control algorithm is proposed to achieve leader–follower consensus without assuming that the interaction topology is strongly connected or contains a directed spanning tree, and it is proved that the velocity tracking errors of the estimators converge to zero asymptotically. Secondly, we consider the switching topologies between the leader and followers, and then a multiple Lyapunov function (MLF) is constructed to prove that each agent can follow the leader by this control scheme, if the dwell time τ is large enough. And thirdly, we provide lower bounds for the number of the pinning agents and the dwell time, respectively, in order to reach consensus.

The remainder of the paper is organised as follows: In Section 2, some basic definitions and preliminary results in graph theory are provided. In Section 3, the distributed estimators are designed and the pinning control scheme is proposed for non-linear multi-agent systems. In Section 4, some new results on the second-order consensus problem are obtained, while these results are validated by the simulation experiments in Section 5. Finally, the paper is concluded in Section 6.

Notations: Specifically, $(\cdot)^{T}$ and $(\cdot)^{-1}$ denote transpose and inverse, respectively. I_{N} in $\mathbb{R}^{N \times N}$ is the identity matrix, and $1_{N} = (1, \ldots, 1)^{T} \in \mathbb{R}^{N}$ denotes the Kronecker product. For $A \in \mathbb{R}^{N \times N}$, $A > 0$ ($A \geq 0$) if A is positive definite (positive semi-definite), and $\lambda_{\text{max}}(A)$ and $\lambda_{\text{min}}(A)$ are the maximum and minimum eigenvalues of the matrix A, respectively. For two real symmetric matrices X and Y, $X > Y (X \geq Y)$ means that $X - Y > 0 (X - Y \geq 0)$.

2 Preliminaries

First, some basic definitions in the graph theory are introduced for subsequent use.

In general, information exchange between agents in a multi-agent system can be modelled by directed or undirected graphs [3, 25]. Let $\mathbb{G} = (V, \xi, A)$ be a weighted directed graph of N agents with a set of nodes $V = \{ \pi_{1}, \pi_{2}, \ldots, \pi_{N} \}$, a set of edges $\xi \subseteq V \times V$, and a non-negative adjacency matrix $A = [a_{ij}]$, which are used to represent the communication topology. The node indexes belong to a finite index set $I = \{1, 2, \ldots, N\}$. An edge of \mathbb{G} is denoted by $e_{ij} = (\pi_{i}, \pi_{j})$. The adjacency elements associated with the edges of the graph are positive, that is, $(\pi_{i}, \pi_{j}) \in \xi \Leftrightarrow a_{ij} > 0$, and the neighbour set of node π_{i} is denoted by $N_{i} = \{ \pi_{j} | (\pi_{i}, \pi_{j}) \in \xi \}$. Moreover, we assume that $a_{ii} = 0$ for all $i \in I$, which means the graph has no self-loop. The Laplacian matrix $L = [l_{ij}] \in \mathbb{R}^{N \times N}$ associated with the adjacency matrix A is defined as

\[
l_{ij} = -a_{ij}, \quad i \neq j
\]

\[
l_{ii} = \sum_{j \in N_{i}} a_{ij}
\]

which ensures that $\sum_{i=1}^{N} l_{ii} = 0, \forall i \in I$.

A directed path in a graph from π_{i} to π_{j} is a sequence of distinct vertices starting with π_{i} and ending with π_{j} such that consecutive vertices are adjacent. A directed graph is strongly connected, if for any two distinct nodes π_{i} and π_{j}, there exists a directed path from node π_{i} to node π_{j}. A directed graph has a directed spanning tree if there exists at least one node called root, which has a directed path to all the other nodes.

The following lemmas will be used in the derivation of the main results.

Lemma 1 [26]: Consider a symmetric matrix $D = \begin{bmatrix} A & E \\ E^{T} & C \end{bmatrix}$, where $A = A^{T}$, and $C = C^{T}$, then D is positive-definite if and only if both C and $A - EC^{-1}E^{T}$ are positive-definite.

Lemma 2 [27]: Suppose that the eigenvalues of symmetric matrices A and $B \in \mathbb{R}^{N \times N}$ satisfy $\lambda_{1}(A) \leq \lambda_{2}(A) \leq \cdots \leq \lambda_{N}(A)$, and $\lambda_{1}(B) \leq \lambda_{2}(B) \leq \cdots \leq \lambda_{N}(B)$, then the following inequalities hold: $\lambda_{i}(A) + \lambda_{i}(B) \leq \lambda_{i}(A + B) \leq \lambda_{i}(A) + \lambda_{i}(B), \forall i = 1, 2, \ldots, m$.

Lemma 3 [21, 28]: For a symmetric matrix $M \in \mathbb{R}^{N \times N}$ and a diagonal matrix $D = \text{diag}(d_{1}, \ldots, d_{N}, 0, \ldots, 0)$ with $d_{i} > 0, i = 1, \ldots, l$, let $M - D = \begin{bmatrix} A-B \otimes M_{l} \\ B^{T} \otimes M_{l} \end{bmatrix}$, where M_{l} is the principal matrix of M by removing its first l row–column pairs, A and B are matrices with appropriate dimensions, and $\tilde{D} = \text{diag}(d_{1}, \ldots, d_{l})$. If $d_{i} > \lambda_{\text{max}}(A - BM_{l}^{-1}B^{T}), i = 1, \ldots, l, M - D < 0$ is equivalent to $M_{l} < 0$.

3 System model

In this section, a new pinning-controlled algorithm and distributed estimators are proposed for non-linear multi-agent systems.
Here, a non-linear multi-agent system is composed of \(N \) coupled autonomous agents with second-order dynamics

\[
\begin{align*}
\dot{x}_i(t) &= v_i(t) \\
\dot{v}_i(t) &= f(x_i(t), v_i(t)) - b v_i(t) + u_i(t), \quad \forall i \in I
\end{align*}
\]

(2)

where \(x_i(t) \in \mathbb{R}^n \) and \(v_i(t) \in \mathbb{R}^n \) denote the position and the velocity, respectively, \(b > 0 \) denotes the velocity damping gain indicating that \(-b v_i\) represents the velocity damping term. The initial conditions of the system is set to be \(x_i(0) = x_{i0}, v_i(0) = v_{i0} \). It is assumed that the damping force is in proportion to the magnitude of velocity. Besides, \(u_i(t) \in \mathbb{R}^n \) is the control input or the protocol in consensus problem, and \(f(x_i, v_i) \in \mathbb{R}^n \) is the intrinsic dynamic of agent \(i \). Note that here all the agents and the leader share the same intrinsic dynamics for simplicity [29, 30].

A leader is described by a double integrator of the form

\[
\begin{align*}
\dot{x}_0(t) &= v_0(t) \\
\dot{v}_0(t) &= f(x_0(t), v_0(t)) - b v_0(t) \\
y(t) &= x_0(t)
\end{align*}
\]

(3)

where \(y(t) = x_0(t) \) is the only variable of the leader that can be measured directly by the agents when they are connected to the leader. In addition, its velocity \(v_0(t) \) keeps changing and cannot be measured. The objective of second-order consensus with the leader is to design control input \(u_i, i = 1, 2, \ldots, N \), such that for any initial condition, the agents can follow the leader in the sense of both position and velocity, that is, \(\lim_{t \to \infty} \|x_i(t) - x_0(t)\| = 0, \lim_{t \to \infty} \|v_i(t) - v_0(t)\| = 0 \).

Since \(v_0(t) \) cannot be measured even when the agents are connected to the leader, we have to estimate \(v_0(t) \) by using the information obtained from its neighbours in a distributed way. The estimation of \(v_0(t) \) by agent \(i \) is denoted by \(\hat{v}_i(t) \) \((i = 1, 2, \ldots, N)\). Thus, for each agent, a neighbour-based coupling rule, which consists of two parts, can be expressed as follows

\[
u_i(t) = k \sum_{j \in N_i} a_{ij} \left[(x_j - x_i) + (v_j - v_i) \right] - d_i \left[(x_i - x_0) + (v_i - \hat{v}_i) \right], \quad i = 1, 2, \ldots, n
\]

(4)

where \(k > 0, d_i \) is the pinning control gain, satisfying \(d_i > 0 \) if agent \(i \) is connected to the leader and \(d_i = 0 \) otherwise, \(a_{ij} \) is the consensus term, which is used to regulate position and velocity between agent \(i \) and its neighbours, and \(\hat{v}_i \) is the pinning control term, which is used to track the leader. Without loss of generality, rearrange the order of all the agents and let the first \(l(1 \leq l \leq N) \) agents in multi-agent system (2) be connected.

A neighbour-based dynamics system to estimate \(v_0(t) \) is designed as follows

\[
\begin{align*}
\dot{v}_i(t) &= f(x_i(t), v_i(t)) - b \hat{v}_i(t) \\
&+ k \sum_{j \in N_i} d_j \left[(x_j - x_i) + (v_j - \hat{v}_j) \right] \\
&- 2d_i (x_i - x_0) - d_i (v_i - \hat{v}_i), \quad i = 1, 2, \ldots, N
\end{align*}
\]

(5)

Remark 1: Note that the distributed estimator is the first-order dynamics system, which is helpful to construct a MLF of switching topologies between leader and followers. Note that, from (5), \(\hat{v}_i(t) \) depends on the information from its neighbours \(\hat{v}_j(t) \) and the measured output of the leader. When \(i = l + 1, \ldots, N \), we have the pinning control gain \(d_i = 0 \), thus the dynamic system of \(\hat{v}_i(t) \) is equivalent to the dynamic system of \(v_i(t) \).

4 Main results

In this section, the consensus problem for non-linear multi-agent systems (2) with the pinning-controlled algorithms (4) is investigated. The convergence analysis is presented and algebraic criteria are established for the leader–follower consensus problem. Furthermore, we discuss switching topologies between leader and followers as an extension. The following assumption is needed for the derivation of the main results in this paper.

Assumption 1: For the non-linear function \(f = (f_1, \ldots, f_n)^T \) in (2), there exist two constant matrices \(W = [w_{ij}] \in \mathbb{R}^n \times n \) and \(M = [m_{ij}] \in \mathbb{R}^n \times n \), in which \(w_{ij}, m_{ij} \geq 0 \), such that

\[
\forall i = 1, 2, \ldots, n, x_i, y_i, z_i \in \mathbb{R}^n
\]

(6)

Note that Assumption 1 is a Lipschitz-like condition, which is satisfied by, for example, all piecewise linear functions [31].

According to two matrices \(W \) and \(M \), define \(p = (1/2) \max_{1 \leq i \neq j} \left\{ \sum_{k=1}^n \left(w_{ik}^2 + m_{ik}^2 + 2w_{kj}^{2(1-\xi)} \right) \right\}, \quad q = (1/2) \max_{1 \leq i \neq j} \left\{ \sum_{k=1}^n \left(w_{ik}^2 + m_{ik}^2 + 2m_{kj}^{2(1-\xi)} \right) \right\} \) and \(c = (1/2) \max_{1 \leq i \neq j} \left\{ \sum_{k=1}^n \left(m_{ik}^2 + m_{kj}^{2(1-\xi)} \right) \right\}, \) where \(\xi \in [0, 1] \). Construct the symmetric matrix \(H = -k(L + L^T)/2) + \rho L \), and \(\rho = \max\{p, q + 1\} \). Let \(D = \text{diag}(d_1, \ldots, d_l, 0, \ldots, 0) \), where \(d_i \) is the pinning control gain. By matrix decomposition, one has \(H - D = \left[\begin{array}{cc} A & B^T \\ B & H_1 \end{array} \right] \), where \(H_1 = -k(L + L^T)/2) + c L \) is the principal matrix of \(H \) by removing its first \(l \) row–column pairs, \(A \) and \(B \) are matrices with appropriate dimensions, and \(D = \text{diag}(d_1, \ldots, d_l) \).

The main result of this paper is given by the following theorem:

Theorem 1: Given system (2)–(5), suppose that Assumption 1 holds. If the following conditions

\[
\begin{align*}
\lambda_{\min}\left(\frac{L + L^T}{2} \right) &> \frac{\rho}{k} \\
\rho - p + d_i &> \lambda_{\max}(A - BH_{1i}^{-1}B^T), \quad \forall i = 1, \ldots, l \\
\rho - q + 1 - b - &\frac{d_i}{2} > \max \left\{ 0, \lambda_{\max}(A - BH_{1i}^{-1}B^T) \right\}, \quad \forall i = 1, \ldots, l \\
\rho - \frac{1}{2} - b - &\frac{d_i}{2} > \lambda_{\max}(A - BH_{1i}^{-1}B^T), \quad \forall i = 1, \ldots, l
\end{align*}
\]

(7)

(8)

(9)

(10)

© The Institution of Engineering and Technology 2013

DOI: 10.1049/iet-cta.2013.0009
are satisfied, then
\[
\lim_{t \to \infty} \|x_t(t) - x_0(t)\| = \lim_{t \to \infty} \|v(t) - v_0(t)\| = \lim_{t \to \infty} \|\hat{v}_1(t) - v_0(t)\| = 0
\]

Proof: By taking \(\bar{x} = x - L_N \otimes x_0, \bar{v} = v - L_N \otimes v_0, \bar{\nu} = \hat{v} - v, \) where \(x = (x_1, x_2, \ldots, x_N)^T, v = (v_1, v_2, \ldots, v_N)^T \) and \(\hat{v} = (\hat{v}_1, \hat{v}_2, \ldots, \hat{v}_N)^T. \) Then, the error dynamics of (2)-(5) can be written as (see (11))

\[
F(x, v) = \left[\begin{array}{c} f^T(x_1, v_1) \\ \vdots \\ f^T(x_N, v_N) \end{array} \right] \quad \text{and} \quad F(x, v) = \left[\begin{array}{c} f^T(x_1, \hat{v}_1) \\ \vdots \\ f^T(x_N, \hat{v}_N) \end{array} \right].
\]

Let \(\bar{y} = [\bar{x}^T, \bar{v}^T, \hat{v}^T]^T \in R^{3N} \), consider the following auxiliary function
\[
V(t) = \frac{1}{2} \bar{y}^T (P \otimes I_n) \bar{y}
\]

where
\[
P = \begin{bmatrix} 0 & k(L + L^T) + D + bI_N & bI_N \\ kI_N & 0 & 0 \\ 0 & kI_N & 0 \end{bmatrix}
\]

First, we show that the matrix \(P \) is positive. Consider the auxiliary matrix \(H - \hat{D}, \) where \(\hat{D} = \begin{bmatrix} 0 & 0 \\ 0 & \hat{D}_1 \\ 0 & \hat{D}_2 \end{bmatrix}, \) and \(\hat{D}_1 = \text{diag} \{ \rho - (1/2) + (b/2) + (d/2), \ldots, \rho - (1/2) + (b/2) + (d/2) \}. \) Using matrix decomposition, one has \(H - \hat{D} = \left[\begin{array}{cc} \hat{A} - \hat{D}_1 & \hat{B} \\ \hat{B}^T & \hat{H}_1 \end{array} \right]. \) It follows from (7) that \(-k\lambda_{\min}((L + L^T)/2) + \rho < 0. \) Therefore, from Lemma 2, \(\lambda_{\max}(H - \hat{D}) < 0, \) that is, \(H - \hat{D} < 0. \) Meanwhile
\[
-k \left(\frac{L + L^T}{2} \right) + bI_N - \left(\frac{b}{2} I_N + D \right)
\]
\[
= -k \left(\frac{L + L^T}{2} \right) + \rho I_N - \left(\frac{\rho I_N - 1/2 I_N + b/2 I_N + D}{2} \right)
\]
\[
\leq -k \left(\frac{L + L^T}{2} \right) + \rho I_N - \hat{D}
\]
\[
= H - \hat{D} < 0
\]

Therefore it is satisfied that
\[
k \left(L + L^T \right) + (b - 1)I_N + D > 0
\]

According to Lemma 1, \(k(t + L + L^T) + (b - 1)I_N + D > 0 \) is equivalent to \(P > 0. \) Hence, the auxiliary function \(V(t) \) is a Lyapunov function.

Next, in order to study the behaviour of \(\hat{V}(t) \) for \(t \in [0, +\infty), \) we can write (see (15))

\[
\hat{V}(t) = \bar{x}^T \left[(k(L + L^T) + bI_N) \otimes I_4 \right] \bar{y} + \bar{v}^T \left[F(x, v) - 1_N \otimes f(x_0, v_0) \right] - \bar{v}^T \left[(kL + bI_N) \otimes I_4 \right] \bar{y} + \left(bI_N \otimes \bar{y} \right) \bar{y} + \left(bI_N \otimes \bar{y} \right) \bar{y}
\]

\[
\hat{V}(t) = \bar{x}^T \left[\left(k(L + L^T) + bI_N \right) \otimes I_4 \right] \bar{y} + \bar{v}^T \left[F(x, v) - 1_N \otimes f(x_0, v_0) \right] - \bar{v}^T \left[\left(kL + bI_N \right) \otimes I_4 \right] \bar{y} + \bar{v}^T \left(bI_N \otimes \bar{y} \right) \bar{y} + \bar{v}^T \left(bI_N \otimes \bar{y} \right) \bar{y}
\]

According to Assumption 1, one obtains that
\[
|\bar{x}^T [F(x, v) - 1_N \otimes f(x_0, v_0)] |
\]
\[
\leq \left\{ \begin{array}{l}
\sum_{i=1}^{N} \sum_{j=1}^{n} \bar{x}_{ij} \left[f(x_i, v_i) - f(x_0, v_0) \right] \\
\sum_{k=1}^{N} \sum_{l=1}^{N} \sum_{j=1}^{n} \left[w_{jk} \bar{x}_{ik} - w_{kl} \bar{x}_{jk} \right] + \sum_{k=1}^{n} \sum_{l=1}^{n} \left[m_{jk} \bar{x}_{ik} - m_{kl} \bar{x}_{jk} \right]
\end{array} \right.
\]

Owing to the fact that \(2|\bar{x}_i| \leq a^{2}x_i^2 + a^{2(1-t)}x_i^2, \forall a > 0, x, y \in R, \xi \in [0, 1], \) (17) can be further rewritten as
\[
|\bar{x}^T [F(x, v) - 1_N \otimes f(x_0, v_0)] |
\]
\[
\leq \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \left[w_{jk} \bar{x}_{ik} + m_{jk} \bar{x}_{ik} \right]
\]
\[
+ \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \left[w_{jk} \bar{x}_{ij}^2 + m_{jk} \bar{x}_{ij}^2 \right]
\]
\[
+ \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \left[w_{jk} \bar{x}_{ij}^2 + m_{jk} \bar{x}_{ij}^2 \right]
\]
Similarly
\[
|\tilde{v}^T [F(x, v) - 1_N \otimes f(x_0, v_0)] |
\leq \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} w_{ik}^2 \tilde{v}_{ijk}^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} w_{ik}^{2(1-\xi)} \tilde{v}_{ijk}^2 \\
+ \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} m_{jk}^2 \tilde{v}_{ijk}^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} m_{jk}^{2(1-\xi)} \tilde{v}_{ijk}^2
\]
(19)
\[
|\tilde{v}^T [F(x, v) - F(x, \tilde{v})] |
\leq \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} m_{jk}^2 \tilde{v}_{ijk}^2 + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} m_{jk}^{2(1-\xi)} \tilde{v}_{ijk}^2 = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{n} \sum_{k=1}^{m} \left(m_{jk}^2 + m_{jk}^{2(1-\xi)} \right) \tilde{v}_{ijk}^2
\]
(20)
By (18), (20) and the fact that \(\tilde{v}^T (D \otimes I_\lambda) \tilde{v} \leq (1/2) \tilde{v}^T (D \otimes I_\lambda) \tilde{v} + (1/2) \tilde{v}^T (D \otimes I_\lambda) \tilde{v} \), we have
\[
\dot{\tilde{v}}(t) \leq \tilde{v}^T \left[\left(-kL + (1-b+q)I_N + \frac{D}{2} \right) \otimes I_\lambda \right] \tilde{v} + \tilde{v}^T \left(-kL + (c-b)I_N + \frac{D}{2} \right) \tilde{v} = \tilde{v}^T \left(\left(-kL + \frac{L^T}{2} + pI_N - D \right) \otimes I_\lambda \right) \tilde{v} + \tilde{v}^T \left(\left(-kL + \frac{L^T}{2} + (1-b+q)I_N + \frac{D}{2} \right) \otimes I_\lambda \right) \tilde{v} + \tilde{v}^T \left(\left(-kL + \frac{L^T}{2} + (c-b)I_N + \frac{D}{2} \right) \otimes I_\lambda \right) \tilde{v}
\]
(21)
With the conditions (7) and (8), we obtain \(-k((L + L^T)/2) + pI_N - D < 0\). In fact, consider the auxiliary matrix \(H - D \), where \(D = \begin{bmatrix} D_0 & 0 \\ 0 & D_0 \end{bmatrix} \), and \(D_i = \text{diag} \{\rho - p + d_1, \ldots, \rho - p + d_l\} \). It follows from (7) and (8) that \(H - D < 0 \). Thus
\[
-kL + \frac{L^T}{2} + pI_N - D \\
= -kL + \frac{L^T}{2} + pI_N - [(\rho - p)I_N + D] \\
\leq H - D < 0
\]
(22)
Similarly, it follows from (7) and (9) that
\[
-kL + \frac{L^T}{2} + (1-b+q)I_N + \frac{D}{2} < 0
\]
(23)
With the definition of \(q \) and \(c \), we have \(q > c \), which implies that
\[
-kL + \frac{L^T}{2} + (c-b)I_N + \frac{D}{2} \\
\leq -kL + \frac{L^T}{2} + (1-b+q)I_N + \frac{D}{2} < 0
\]
(24)
In view of (21), we have \(\dot{\tilde{v}}(t) < 0 \) if \(\tilde{v} \neq 0 \). Consequently, the agents can follow the leader in the sense of both position and velocity, and the velocity tracking errors of estimators converge to zero asymptotically, that is, \(\lim_{t \to \infty} \|x(t) - x_0(t)\| = \lim_{t \to \infty} \|v(t) - v_0(t)\| = \lim_{t \to \infty} \|\tilde{v}(t) - v_0(t)\| = 0 \). This completes the proof. \(\square \)

Remark 2: Let us take a closer look at the conditions in Theorem 1. First, conditions (7)–(10) imply that the number of pinned agents should be equal or greater than 1, and less than \(N \), that is, \(1 \leq l < N \). In fact, if \(l = N \), then \((L + L^T)/2)_{\lambda} \) is an empty set, hence condition (7) is not satisfied. Moreover, if \(l = 0 \), then \(H_{\lambda} \) is an empty set, and \(H_{\lambda}^{-1} \) does not exist, hence conditions (8)–(10) are not satisfied. Furthermore, from (8) to (10), it is easy to see that if the velocity damping gain \(b \) is large enough, then conditions (8)–(10) are satisfied trivially. However, for large \(b \), one may find that the leader’s velocity converges to zero rapidly according to (3), and it seems that the neighbour-based estimator design approach does not make sense. Meanwhile, as \(l \) increases, the magnitude of \(\lambda_{\text{max}} \left(\tilde{A} - BH_{\lambda}^{-1}B^T \right) \) decreases, and so does \(b \). Thus, the number of pinned agents should be increased, which increases the cost in reality. So there is a tradeoff between \(l \) and \(b \).

Remark 3: First, we give the definition of zero in-degree strong connected component. A strong connected component \(\xi_l \) is considered to be zero in-degree if the neighbour set \(N_i \) of each agent \(i \) in \(\xi_l \) satisfies \(N_i \subseteq \xi_l \). Since the interaction topology of the followers does not have a directed spanning tree in this paper, the network of the followers must have multiple zero in-degree strong connected components, denoted by \(\xi_1, \ldots, \xi_k \). Then, according to condition (7), we have \(l \geq K \). In fact, suppose that \(l < K \), there must be a zero in-degree strong connected component \(\xi_l \), such that there is no path from the leader to \(\xi_l \). Let \(L_0 \) denote the Laplacian matrix of \(\xi_l \), considering the matrix \((L + L^T)/2)_{\lambda} \), by rearranging the order of the agents, we have \((L + L^T)/2)_{\lambda} = \begin{bmatrix} 0 & 0 \\ 0 & (L_0 + L_0^T)/2 \end{bmatrix} \). Owing to the fact that \(1^T((L_0 + L_0^T)/2) = 1 \), one has the matrix \((L + L^T)/2)_{\lambda} \) is not positive-definite. However, according to condition (7), it follows that the matrix \((L + L^T)/2)_{\lambda} \), is positive-definite, which results in a contradiction.

Note that in Theorem 1, the algebraic criteria (7)–(10) are established to achieve leader–follower consensus of non-linear multi-agent systems (2)–(5). However, the conditions (8)–(10) seem to be difficult to implement, because both sides of the inequalities are the functions of \(\rho \). Based on Theorem 1 and its proof, we have the following corollary to resolve this problem.

Corollary 1: Given system (2)–(5), suppose that Assumption 1 holds. If the following conditions are satisfied
\[
\lambda_{\text{min}} \left(\frac{(L + L^T)}{2} \right) > \frac{\rho}{k}
\]
(25)
\[
d_i > \lambda_{\text{max}} \left(\tilde{A} - BH_{\lambda}^{-1}B^T \right), \quad \forall i = 1, \ldots, l
\]
(26)
\[
b - d_i \frac{D}{2} > 0
\]
(27)
then
\[
\lim_{t \to \infty} \|x(t) - x_0(t)\| = \lim_{t \to \infty} \|v(t) - v_0(t)\| = \lim_{t \to \infty} \|\tilde{v}(t) - v_0(t)\| = 0
\]
In practice, the relationships between leader and followers may vary over time, and their interconnection topology may also be dynamically changing. Consequently, switching topologies between leader and followers should be taken into account.

Suppose that there is an infinite sequence of bounded, non-overlapping, contiguous time-intervals $[t_i, t_{i+1})$, $i = 0, 1, \ldots$ with $t_0 = 0$. To avoid infinite switching during a finite time interval, assume as usual that there is a constant τ (called dwell time) with $t_{i+1} - t_i \geq \tau$ for all $j \geq 0$. Denote $g_0 = (D_1, D_2, \ldots, D_m)$ as a set of the pinning control gain matrices of all possible topologies between leader and followers, and $I = \{1, 2, \ldots, m\}$ as its index set. Without loss of generality, we assume that $d_i(t) = \bar{d}$ if agent i is connected to the leader at t and $d_i(t) = 0$ otherwise, where \bar{d} is a constant. For each D_i, there exists an orthogonal matrix U_i, such that $D_i = U_i^T D_i U_i = \text{diag}(\bar{d}_1, \ldots, \bar{d}_i, 0, \ldots, 0)$. The piecewise-constant function $\sigma(t) : [0, \infty) \rightarrow I$, is the switching signal, which is used to describe the variable interconnection topology between leader and followers. Moreover, $\sigma(t) = k$ means that the pinning control gain matrix D_k is activated at time t. Therefore the corresponding error dynamics system with switching topologies can be written as (see (28))

Next, consider the switching topologies, we have the following result, which is an extension of Theorem 1.

Theorem 2: Given system (28), suppose that Assumption 1 holds, and the following conditions are satisfied:

\[
\rho_{\max} \left\{ \left(\frac{L_i + L_i^T}{2} \right) \right\}_{ij} > \frac{\rho}{k}, \quad \forall i = 1, \ldots, m
\]

\[
\rho - p + \bar{d} > \rho_{\max} \left(\bar{A}_i - B_i H_i^{-1} B_i^T \right), \quad \forall i = 1, \ldots, m
\]

\[
\rho - q + b - \frac{\bar{d}}{2} > \max \left\{ 0, \rho_{\max} \left(\bar{A}_i - B_i H_i^{-1} B_i^T \right) \right\}, \quad \forall i = 1, \ldots, m
\]

\[
\rho - \frac{1}{2} + b - \frac{\bar{d}}{2} > \rho_{\max} \left(\bar{A}_i - B_i H_i^{-1} B_i^T \right), \quad \forall i = 1, \ldots, m
\]

where $\left(\left(L_i + L_i^T / 2 \right) \right)_{ij}$ is the minor matrix of $\left(L_i + L_i^T / 2 \right)$ by removing its first i row–column pairs, $L_i = U_i^T \bar{L}_i U_i$, and $H_i = U_i^T H_i U_i = -k \left(\left(L_i + L_i^T / 2 \right) / 2 + \rho I_i \right)$. If the dwell time τ is large enough, then $\lim_{t \to \infty} \| v_i(t) - v_0(t) \| = \lim_{t \to \infty} \| \bar{v}_i(t) - v_0(t) \| = 0$.

Proof: Consider the following auxiliary function

\[V(t) = \frac{1}{2} \hat{y}^T \left(P_i \otimes I \right) \hat{y} \]

where

\[
\hat{y} = \left[\bar{x}^T, \bar{v}^T, \bar{y}^T \right]^T \in R^{3n}\text{ and}
\]

\[
P_i = \begin{bmatrix}
 k (L_i + L_i^T) + D_i + bI_i & I_N & I_N \\
 I_N & I_N & I_N \\
 0 & 0 & I_N
\end{bmatrix}
\]

Take an interval $[t_i, t_{i+1})$ into consideration. Without loss of generality, assume that $\sigma(t) = i$ for $t \in [t_i, t_{i+1})$. Let

\[
\dot{\tilde{y}} = \left[\tilde{U}_i^T \quad \tilde{U}_i^T \quad \tilde{U}_i^T \right] \otimes I_N \tilde{y} = \left[\bar{y}_1^T, \bar{y}_2^T, \bar{y}_3^T \right]^T
\]

thus

\[
V(t) = \frac{1}{2} \hat{y}^T \left(P_i \otimes I \right) \hat{y} \]

where

\[
P_i = \begin{bmatrix}
 k (L_i + L_i^T) + D_i + bI_i & I_N & I_N \\
 I_N & I_N & I_N \\
 0 & 0 & I_N
\end{bmatrix}
\]

and $L_i = U_i^T L_i U_i$. Similar to the analysis of Theorem 1, we have that

\[
\dot{\tilde{y}}(t) \leq \tilde{y}^T \left(\left[\begin{array}{c}
 -k (L_i + L_i^T / 2) + pI_N - D_i \\
 0
 \end{array} \right] \otimes I_N \right) \tilde{y}_1
\]

\[
+ \tilde{y}_2^T \left(\left[\begin{array}{c}
 -k (L_i + L_i^T / 2) + (1 - b + q)I_N + D_i / 2 \\
 0
 \end{array} \right] \otimes I_N \right) \tilde{y}_2
\]

\[
+ \tilde{y}_3^T \left(\left[\begin{array}{c}
 -k (L_i + L_i^T / 2) + (c - b)I_N + D_i / 2 \\
 0
 \end{array} \right] \otimes I_N \right) \tilde{y}_3
\]

According to (29)–(32), we obtain that $\dot{\tilde{y}}(t) < 0$ for $t \in [t_i, t_{i+1})$ if $\tilde{y} \neq 0$, where $V(t)$ is obtained that MLF [32, 33]. By Lemma 9 in [32], we have that the switched system (28) is globally asymptotically stable, that is, $\lim_{t \to \infty} \| x_i(t) - x_0(t) \| = 0$, $\lim_{t \to \infty} \| v_i(t) - v_0(t) \| = 0$ and $\lim_{t \to \infty} \| \tilde{v}_i(t) - v_0(t) \| = 0$, if the dwell time τ is large enough. Then the proof is complete.

The following corollary is a generation of Corollary 1.

Corollary 2: Given system (28), suppose that Assumption 1 holds, and the following conditions are satisfied

\[
\rho_{\max} \left\{ \left(\frac{L_i + L_i^T}{2} \right) \right\}_{ij} > \frac{\rho}{k}, \quad \forall i = 1, \ldots, m
\]

\[
\bar{d} > \rho_{\max} \left(\bar{A}_i - B_i H_i^{-1} B_i^T \right), \quad \forall i = 1, \ldots, m
\]

\[
\tilde{v} = F(x, v) - \left\{ k (L + D) \otimes I, k (L + bI) \otimes I \right\} \bar{x} - \left\{ k (L + bI) \otimes I \right\} \bar{v} + \left(D_0 \otimes I \right) \bar{v}
\]
then it can be obtained that \(\lim_{t\to\infty} \|x_i(t) - x_0(t)\| = \lim_{t\to\infty} \|v_i(t) - v_0(t)\| = \lim_{t\to\infty} \|\hat{v}_i(t) - v_0(t)\| = 0 \) if the dwell time \(\tau \) is large enough.

In Theorem 2 and Corollary 2, it is shown that all the followers reach a consensus with the leader asymptotically provided that the dwell time \(\tau \) is large enough, which leads to the question that how to determine a lower bound for \(\tau \). The following corollary tries to answer this question by giving a lower bound for \(\tau \) to guarantee the consensus.

Denote
\[
\begin{align*}
\lambda_1 &= \max_{j \in \{1, \ldots, m\}} \left\{ \lambda_{\max}(P_j) \right\} \\
\lambda_2 &= \min_{j \in \{1, \ldots, m\}} \left\{ \lambda_{\max}(P_j) \right\} \\
\lambda_3 &= -\max_{j \in \{1, \ldots, m\}} \left\{ \lambda_{\max}(P_j) \right\} \\
\lambda_4 &= \frac{\lambda_1}{\lambda_2} \\
\lambda_5 &= \frac{\lambda_1}{\lambda_3}
\end{align*}
\]

Corollary 3: Given system (28), suppose that Assumption 1 and (29)–(32) hold. If the dwell time \(\tau \) satisfies the following inequality
\[
\tau > \frac{\lambda_3[\ln \lambda_1 - \ln \lambda_2]}{2\lambda_3}
\]
then
\[
\lim_{t \to \infty} \|x_i(t) - x_0(t)\| = \lim_{t \to \infty} \|v_i(t) - v_0(t)\| = \lim_{t \to \infty} \|\hat{v}_i(t) - v_0(t)\| = 0
\]

Proof: According to Theorem 2, we have \(\lambda_1 > 0, \lambda_2 > 0, \lambda_3 > 0 \). Take the interval \([0, t_1]\) into consideration, without loss of generality, assume that \(\sigma(t) = \sigma_1 \) for \(t \in [0, t_1) \). It follows from (33) and (35) that
\[
\hat{V}_{\sigma_1}(t) \leq -\frac{2\lambda_3}{\lambda_1} V_{\sigma_1}(t)
\]
then \(\hat{V}_{\sigma_1}(t) \leq -\frac{2\lambda_3}{\lambda_1} V_{\sigma_1}(0) \), namely
\[
V_{\sigma_1}(t) \leq e^{-\frac{2\lambda_3}{\lambda_1} t} V_{\sigma_1}(0)
\]
For \(t \in [t_1, t_2) \), we have
\[
\hat{V}_{\sigma_1}(t) \leq -\frac{2\lambda_3}{\lambda_1} V_{\sigma_1}(t)
\]
\[
\therefore \quad V_{\sigma_1}(t) \leq e^{-\frac{2\lambda_3}{\lambda_1} (t-t_1)} V_{\sigma_1}(t_1)
\]
\[
\leq e^{-\frac{2\lambda_3}{\lambda_1} \frac{\lambda_1}{\lambda_2} V_{\sigma_1}(t_1)}
\]
\[
\leq e^{-\frac{2\lambda_3}{\lambda_1} \frac{\lambda_1}{\lambda_2} V_{\sigma_1}(0)}
\]
By induction, for \(t \in [t_i, t_{i+1}) \), we obtain
\[
V_{\sigma_i}(t) \leq e^{-\frac{2\lambda_3}{\lambda_1} \frac{\lambda_1}{\lambda_2} V_{\sigma_i}(0)}
\]
According to the definition of the dwell time \(\tau \), we have \(t < (t/\tau) \), then (44) could be rewritten as
\[
V_{\sigma_i}(t) \leq e^{-\frac{2\lambda_3}{\lambda_1} \frac{\lambda_1}{\lambda_2} \frac{t}{\tau} V_{\sigma_i}(0)}
\]
As a result, in view of (39), all the agents can follow the leader in the sense of both position and velocity, and the velocity tracking errors of estimators converge to zero asymptotically, that is, \(\lim_{t \to \infty} \|x_i(t) - x_0(t)\| = \lim_{t \to \infty} \|v_i(t) - v_0(t)\| = \lim_{t \to \infty} \|\hat{v}_i(t) - v_0(t)\| = 0 \). This completes the proof.

5 Numerical simulation

In this section, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results. In the simulation, the leader moves in a three-dimensional space, and its velocity is governed by the following Chua’s oscillator in [34]
\[
\begin{align*}
\dot{v}_0 &= \theta (v_02 - v_01 - h (v_01)) - b v_03 \\
\dot{v}_02 &= v_02 - v_01 + v_03 - b v_00 \\
\dot{v}_03 &= -\alpha \sin (\alpha x_03) - \gamma v_02 - \beta v_03 - b v_03
\end{align*}
\]
where \(v_0 = [v_01, v_02, v_03]^T \), and \(h(v_01) = b v_01 + 0.5(a_0 - b_0) [v_01 + 1] - |v_01 - 1| \). In order to verify whether the nonlinear function \(f \) in (46) satisfies Assumption 1, we first need to check if the function \(h \) satisfies the Lipschitz condition. In fact, for any \(x, y \in R \), we have (see (47))

By some calculations, we obtain the following two matrices
\[
W = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\alpha & \delta & \omega
\end{bmatrix}
\]
\[
M = \begin{bmatrix}
\theta & 1 & 1 \\
1 & 0 & 1 \\
\gamma & \beta & 0
\end{bmatrix}
\]
where
\[
\begin{align*}
|h(x) - h(y)| &= |b_0 x + \frac{a_0 - b_0}{2} |x + 1| - |x - 1| - b_0 y - \frac{a_0 - b_0}{2} |y + 1| - |y - 1| |
\leq |b_0(x - y)| + \frac{|a_0 - b_0|}{2} |x + 1 - y + 1| + \frac{|a_0 - b_0|}{2} |x - 1 + y - 1|
\end{align*}
\]
\[
|h(x)| \leq |b_0| + |a_0 - b_0||x - y| \quad \text{(47)}
\]
Fig. 1 Interaction topology of ten agents

and the parameters in (48) are chosen as $\theta = 1$, $\alpha = 13.52$, $\beta = 0.3698$, $\gamma = 1.376$, $\epsilon = 0.2$, $w = 0.5$, $a_0 = -1.7523$, and $b_0 = -0.8345$. With the definition of p, q and ρ, by choosing $\xi = (1/2)$, we have $p = 2.3937$, $q = 4.876$, $\rho = 5.876$. Next, we consider ten agents with the interaction topology illustrated in Fig. 1.

Here, the interaction topology of these ten agents does not have a directed spanning tree. It is satisfied that $a_{ij} = 1$ for any $(\pi_i, \pi_j) \in \varsigma$, otherwise $a_{ij} = 0$. Then, the total error of the multi-agent system is defined as follows

$$
e_x = \frac{1}{10} \sum_{i=1}^{10} \left[\sum_{j=1}^{10} [x_{ji}(t) - x_0(i)] \right]^2$$

$$
e_v = \frac{1}{10} \sum_{i=1}^{10} \left[\sum_{j=1}^{10} [v_{ji}(t) - v_0(i)] \right]^2$$

$$
e_{\hat{v}} = \frac{1}{10} \sum_{i=1}^{10} \left[\sum_{j=1}^{10} [\hat{v}_{ji}(t) - v_0(i)] \right]^2$$

(49)

Case 1: Fixed topology between leader and followers. At first, we should determine which agents should be pinned. From [28, 35], it is pointed out that for a digraph \mathcal{G}, let V and D denote the node set of \mathcal{G} and the pinned-node set, respectively. All nodes in V/D should have access to the pinned-node set D, that is, for any node $i \in V/D$, one can always find node $j \in D$ such that there exists a directed path from node j to node i. From Fig. 1, agent 5 should be pinned first, because its state is not affected by others. Furthermore, agents 1, 2 and 3 are strongly connected, and their states are not affected by others. Hence, agents 1, 2 and 3 should be chosen as pinned candidates. Based on comprehensive consideration of tracking performance and the number of pinning nodes, we choose agents 1, 2, 5 and 9 as pinned agents. The initial values of the leader’s position and velocity are given by $x_0 = [11, 13, 12]^T$ and $v_0 = [-1, 0, 1]^T$, respectively. Furthermore, the initial positions, velocities of the ten agents and the initial velocities of the estimator are chosen randomly from the cube $[6, 20] \times [6, 20] \times [-0.1, 0.1] \times [-0.1, 0.1]$, respectively. Based on Theorem 1, we choose $k = 12.38$, $d_1 = d_2 = d_3 = d_4 = 1.9028$, and $b = 7.2302$. According to the dynamics (2)–(5), the evolutions of positions and velocities of these ten agents are shown in Figs. 2 and 3, respectively. It should be noted that the solid line represents the evolutions of the leader. Also, the evolution of velocity of estimators and the total error are shown in Figs. 4 and 5. From Figs. 2 to 5, one can see that the multi-agent system (2) with second-order dynamics reaches leader–follower consensus and the velocities of four estimators converge to the leader’s velocity.
Case 2: Switching topologies between leader and followers. In this case, there are two pinning control gain matrices D_1 and D_2. For D_1, we choose agents 1, 5 and 9 as pinned agents, and for D_2, we choose agents 1, 2, 5 and 9 as pinned agents. The system (28) starts at D_1, and switches every $T = 10 \text{ s}$ between D_1 and D_2. Moreover, the initial values of leader’s position and velocity are given by $x_0 = [11, 13, 12]^T$ and $v_0 = [-1, 0, 1]^T$, respectively. Also, the initial positions and velocities of the ten agents, and the velocities of the estimator are chosen randomly from the cube $[6, 20] \times [6, 20] \times [6, 20]$, respectively. Based on Theorem 2, we choose $k = 14.32$, $\bar{d} = 2.0141$ and $b = 7.3972$.

According to the dynamics (28), the evolutions of positions and velocities of these ten agents are shown in Figs. 6 and 7, respectively. Also, the evolutions of velocities of estimators and the total error are shown in Figs. 8 and 9. From Figs. 6–9, one can see that the multi-agent system (28) with second-order dynamics reaches leader–follower consensus.
and the velocities of four estimators converge to the leader’s velocity.

6 Conclusion

This paper has discussed the consensus problem of a group of second-order agents with an active leader, whose velocity cannot be measured. To solve the problem, a neighbour-based estimator design approach and a pinning-controlled algorithm have been proposed for each autonomous agent. Without assuming that the interaction topology is strongly connected or contains a directed spanning tree, all the agents in the group could follow the leader, and the velocity tracking errors of estimators converged to zero asymptotically. Besides, the paper has also considered switching topologies between leader and followers. With the help of an MLF, it has been proved that if the dwell time \(\tau \) is large enough, all the agents could also follow the leader in this case, and meanwhile, a lower bound for the dwell time is provided. Finally, two numerical simulations have been presented to illustrate the theoretical results. Further extensions will focus on the situations where the agents and the leader do not share the same intrinsic dynamics.

7 Acknowledgment

This work was supported by the National Natural Science Foundation of China under the Grants no. 60974017, 61273212, 61104145 and 61004097, the Natural Science Foundation of Jiangsu Province of China under Grant no. BK2011581, the Research Fund for the Doctoral Program of Higher Education of China under Grant no. 2011009210024, the Fundamental Research Funds for the Central Universities of China, and the Information Processing and Automation Technology Prior Discipline of Zhejiang Province Open Research Foundation under Grant no. 20120801 and 20120802.

8 References