
Temporal motifs reveal collaboration patterns in online task-oriented networks

Qi Xuan,1, 2 Huiting Fang,1 Chenbo Fu,1, 2 and Vladimir Filkov2

1Department of Automation, Zhejiang University of Technology, Hangzhou 310023, China
2Department of Computer Science, University of California, Davis, CA 95616, USA

Real networks feature layers of interactions and complexity. In them, different types of nodes can interact
with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs),
where teams of people share tasks towards creating a quality artifact, such as academic research papers or
software development in commercial or open source environments. Accomplishing those tasks involves both
work, e.g. writing the papers or code, and communication, to discuss and coordinate. Taking into account the
different types of activities, and how they alternate over time can result in much more precise understanding of
the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and
link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal
motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available
data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the
observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency
between collaboration and communication in the code writing process. Moreover, we show that models based
on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion
to programmer productivity, than models based on aggregated TOSNs.

PACS numbers: 89.75.Hc, 89.75.Fb, 87.23.Ge, 89.75.Kd

I. INTRODUCTION

With the availability of electronic communication data
on phone calls [1], emails [2], tweets [3], etc., social net-
works [4, 5] have been extensively studied in recent years and
their significance in various social processes is now widely
recognized [6–8]. More recently, the focus has been on task-
oriented social networks (TOSN), i.e. communities of people
who are virtually organized around and working on a com-
mon goal, i.e., there is a typical wealth of other data recording
their technical contribution. Examples of such communities
are Open Source Software (OSS) projects [9], Wikipedia [10],
Stack Overflow [11], etc., where people cooperate to cre-
ate software, share knowledge, and provide quick and high-
quality answers for different kinds of questions, respectively.

One of the more interesting phenomena observed in empir-
ical network research is that social, biological, and technical
networks share some common structural properties, such as
small-worldiness [12], scale-freeness [13], and motifs rich-
ness [14, 15]. Revealing global properties helps to capture a
network as a whole, while identifying mesoscale motifs is im-
portant to understand its evolving mechanism in a bottom-up
fashion [16, 17]. Many efforts have been made to identify mo-
tifs, or small connected subgraphs, in complex networks. For
example, Shen-Orr et al. [14] detected motifs in the transcrip-
tional regulation network of Escherichia coli, and found that
each of the significant motifs has specific function in deter-
mining gene expression; while Valverde and Solé [18] found
that the frequent motifs in software networks are more likely
to be a consequence of network heterogeneity and size rather
than software functionality.

Real complex networks are also dynamic or temporal. The
nodes are connected via links representing discrete events [19,
20], e.g., in social networks, individuals join and quit fre-
quently and they communicate with each other at different
times [21]; and in biological networks, there are sequences

of activities to process gene regulation [22]. The sequence
of these events have been shown to have important effects
on many processes in the networks [23, 24]. In fact, some
sequences of links recur, forming temporal motifs. Identify-
ing such temporal, or time-dependent, motifs in networks has
been receiving attention lately. Braha and Bar-Yam [25] stud-
ied a series of static, or snapshot networks, by aggregating
events over short time periods and counting observed tempo-
ral motifs in them. Bajardi and Dornhaus [26] considered tem-
poral motif as sequences of connected events belonging to ad-
jacent time windows; and Kovanen et al. [27] considered two
events ∆t-connected if a sequence of events exists between
them, satisfying that each pair of the consecutive events have
at least one node in common and the time interval between
them is no longer than ∆t. Then, they studied connected tem-
poral motifs consisting of ∆t-connected events. These studies
address the time dimension of complex networks, and their re-
sults indicate that motifs in the overall aggregate networks are
always over-represented, leading to inflated results.

In this paper, we focus on identifying temporal motifs in
task-oriented social networks (TOSNs) in order to reveal tem-
poral collaboration between people working on the same arti-
fact. In particular, we consider our networks as containing, in
the simplest case, two types of nodes: people (P) and artifacts
(A), and two types of links between them: people working on
artifacts (P → A) and people communicating with others (P →
P)1. Then, for a temporal collaboration to occur, it is necessary
that two people work on the same artifact(s), e.g., P1 → A,
and P2 → A, at close enough points in time. However, this is
not sufficient. To observe the dependency between these two

1 These two kinds of activities might not be independent, in fact, we have
shown that communication is vital to make the temporal collaboration ef-
fective [28].

2

different kinds of activities and understand the evolution of a
TOSN as a whole, the respective collaboration and commu-
nication networks should be considered simultaneously. This
motivates our current work where the challenge is to develop
novel methods to identify task-related temporal motifs, in-
volving two people, an artifact, and the two activities of work-
ing on the artifact or communicating. With such methods we
hope to reveal the specific roles of communication in temporal
collaboration. Such temporal motifs can also be used to filter
accompanying noisy information, such as non-collaborative
activities and independent communication activities, so as to
make the relationship between communication and collabora-
tion more distinct and to suggest appropriate layered network
models [29–33]. This approach can be further used to help
reveal latent team structures with higher confidence, which is
considered to be strongly associated with individual and group
performance [34–37].

The rest of the paper is organized as follows. In Sec. II,
we introduce TOSNs and the data set collected from OSS
projects. In Sec. III, we propose a method to identify temporal
motifs in TOSNs and use a null model to generate random net-
works for comparison. In Sec. IV, we use the temporal motifs
to filter structural noisy information so as to reveal the dis-
tinct relationship between collaboration and communication.
We then apply these motifs to visualize the temporal interac-
tions between individuals. In Sec. V, we use these temporal
motifs to reveal the team structure, and adopt their structural
properties to model individual and team productivity. Finally,
the paper is concluded in Sec. VI.

II. TASK-ORIENTED SOCIAL NETWORKS

A TOSN usually contains different types of nodes and links,
i.e., people collaborate to produce different kinds of artifacts,
such as movies [12], music [38], scientific papers [39, 40],
software [41–43] etc.; they may also communicate with each
other to coordinate their work through different media. Such
a network is more general than bipartite networks [1, 44] and
multiplex networks [29–33], where only the type of nodes and
the type of links vary, respectively. For simplicity, here we
mainly focus on the basic TOSN with two types of nodes, i.e.,
a group of people (P) work on artifacts (A), and they commu-
nicate with each other, as shown in FIG. 1. Such basic TOSN
is sufficient to provide the simplest framework to study inter-
actions between communication and collaboration, thus en-
abling the quantitative study of socio-technical systems [45–
47]; more complex TOSN can be considered as a natural col-
lections of basic ones, i.e., more types of artifacts and more
communication channels can be added into the framework to
study interactions among them at finer resolutions.

Here, a TOSN is denoted by G = {X,Y,EX , EY , EB},
where X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yM} are
the node sets containing two types of nodes, people and arti-
facts, respectively;EX , EY , andEB are the link (or edge) sets
where EX is the set of communication links between people
(P → P) , EY is the set of dependency links between artifacts
(A → A), and EB is the set of links from people to artifacts (P

…. ….

FIG. 1: (Color online) Sketch of a typical TOSN, with two types
of nodes and links, i.e., a group of people collaborating to process
a number of artifacts, while they communicate with each other to
coordinate their work.

→ A). Each link in the TOSN is represented by a sequence of
time stamps at which the series of interacting events between
the two incident nodes were recorded.

In this paper, we focus on Open Source Software (OSS)
projects TOSNs, as examples on which to introduce and study
temporal motifs. In each OSS project, there are a group of
developers whose work activities are in large part committing
code changes to the artifact files, and they communicate with
each other through emails. We choose OSS because in addi-
tion to the availability of their work activities, the developer
discussions via emails are also archived and often meaning-
fully related to the work activities [37].

We collected commit and email communication activities
of developers from 31 OSS projects from the Apache Soft-
ware Foundation on March 24th, 2012, from which we ob-
tain the TOSNs, one for each project. For each project, email
communications were mined from the developer mailing lists,
while commit activities are gathered from the corresponding
Git repository [48]. Note that messages may be automatically
posted to a mailing list in an OSS community to inform others
when some work is completed. To exclude such trivial com-
munication activities, we consider only response emails [37].
We also use a semi-automatic approach to solve the problem
of multiple aliases which some developers use [48].

III. TEMPORAL MOTIFS IN TOSN

The simplest meaningful motif in a network is a triangle in-
volving three nodes, the richness of which is used to quantify
the local clustering of the network [49]. For every triple of
nodes in a TOSN denoted by G, there are in total four combi-
nations: {xi, xj , xk}, {yi, yj , yk}, {xi, yj , yk}, {xi, xj , yk}.
For the first two cases, the motifs are the same as those in the
networks containing only one type of node and thus will not
be considered here. For the third case, since the dependen-
cies between files are relatively stable when compared to the
other two types of links, the temporal three-motifs mean that a
developer tends to process related artifacts at successive time
by following a random walk on the file dependency network,

3

AB/BA

TAB/TBA ATB/BTA

ABT/BAT

(a) (b)

(c)

(d)

TTAAB BBAT AAAA AABA TTTT BBTTA BBAATB TTAAB BAAA

TAB BAT A ABA T BTA BATB TAB BA

AB TAB BAT BA BTA BAT ATB TAB BA (e)

TOSN Temporal motifs

T

A

B

FIG. 2: (Color online) (a) A TOSN with six developers (red circles) and seven files (blue squares). (b) Four typical temporal motifs: plan
before temporal collaboration (TAB/TBA), call for participation (ATB/BTA), discussion after temporal co-commits (ABT/BAT), and temporal
co-commits without communications by email (AB/BA). (c) The ordered sequence of activities, which is divided into subsequence at the inter-
activity intervals larger than a given threshold θ. (d) The subsequences after combining the same successive elements. (e) Counting temporal
motifs in the resulting subsequence.

which has been extensively studied in both theory and prac-
tice [50, 51], and thus will also be excluded in this study. The
fourth case will be the focus of this paper: temporal three-
motifs indicating a co-evolving pattern between collaboration
and communication of two developers working on the same
file. Since the motifs on the combination {xi, xj , yk} don’t in-
volve the dependency links between artifacts, we set EY = ∅
in the rest of the paper.

A. Mathematical Definitions

Here we define activity sequences among the nodes
{xi, xj , yk} in G, as defined above. We denote by “T” a
communication activity between developers xi and xj , by
“A” a commit activity of xi, and by “B” a commit activity
of xj on file yk, respectively, as shown in FIG. 2 (a). Then,
over time, the activities over these three nodes form an or-
dered sequence S = (s1, s2, . . . , sH) ∈ {T,A,B}H , with el-
ement sh occurring at time th, and satisfying th < th+1 for
h = 1, 2, . . . , H − 1.

There are six different temporal activity triples, correspond-
ing to the three element permutations of {T,A,B}:TAB, TBA,
ATB, ABT, BTA, and BAT. TAB, e.g., means the two develop-
ers xi and xj communicate with each other first, perhaps plan-
ning or coordinating future actions, after which xi commits to

the file yk and then xj follows suit. Since the commit activities
A and B have no precedence in time over each other, i.e. are
topologically equivalent, these six triangles can be combined
into the following three temporal motifs: TAB and TBA, de-
noted by M1, meaning planning followed by temporal collab-
oration; ATB and BTA, denoted by M2, meaning call for par-
ticipation; and ABT and BAT, denoted by M3, meaning dis-
cussion after temporal co-commits. Such temporal motifs can
then be used to quantify the co-evolving patterns of collabo-
ration and communication between developers in a TOSN. In
order to investigate more comprehensively the role of email
communication in a collaboration, we include a fourth motif,
representing AB and BA, denoted by M4, meaning that two
developers might temporally co-commit to the same file with-
out communicating by email. All these motifs are visualized
in FIG. 2 (b).

B. Identification of Temporal Motifs

Given a sequence of activities for a triple of nodes
{xi, xj , yk}, we consider long time intervals in the sequence
to be natural separators between series of temporal motifs,
since a discussion or code commits are more likely occur as
bursts of communications or commits [28]. We reconstruct
their temporal motifs as follows.

4

1. Divide. Given a sequence S = (s1, s2, . . . , sH) of ac-
tivities occurring at successive times ti, we divide them
into subsequences defined by si’s and si+1’s separated
by large time intervals, i.e., ti+1 − ti > θ, some prede-
fined threshold, as shown in FIG. 2 (c).

2. Combine. For each subsequence, we combine repeated
successive activities, as shown in FIG. 2 (d). We denote
by F = (f1, f2, . . . , fP) the resulting subsequence, sat-
isfying fi ̸= fi+1 for i = 1, 2, . . . , P − 1.

3. Count. We count the occurrence of our four motifs
above, M1, . . . ,M4, by looking at consecutive, non
overlapping tuples or triples in F , as shown in FIG. 2
(e). The tuples AB or BA are counted as motif M4 only
if not preceded or followed by T, in which case they will
be counted as M1 or M3.

We note that we only consider two- or three-motifs through-
out the paper, but the method proposed above can be directly
extended to identify longer motifs.

C. Null Model for Comparison

In a static complex network containing only one kind of
nodes, the significance of a motif is always validated by
comparing with the random networks generated by a null
model, as conditionally randomized versions of the real net-
work [14, 15, 18, 52], e.g., random networks with the same
degree sequence. A motif is considered structurally signif-
icant only when its count in the real network is statistically
larger than those in the random networks. The situation is
more complicated in temporal networks, where the time di-
mension is not projected out and thus the successive activi-
ties in a temporal motif must be near each other in time. In
this case, the randomized reference can be obtained by time-
shuffling [27], i.e., randomly exchanging the time stamps of
events but keeping the structure of the aggregate network the
same, to observe the temporal correlations among events.

In temporal TOSNs, we focus on motifs that indicate tem-
poral correlations among different kinds of individual activi-
ties. Such temporal correlations can be found in both the net-
work structure and the time series of the activities. In reality,
however, the network structure may depend on other factors,
such as the order in which individuals and artifacts joined the
system (e.g., developers don’t commit to files that were cre-
ated after they had left the project) and the dependency be-
tween artifacts (e.g., developers are more likely to commit
to dependent files). The rewiring process that generates the
null background can potentially break down such orders and
dependencies, and thus might make the null model inappro-
priate. Therefore, here we would like to create a null model
by only shuffling the time intervals between activities under
certain conditions, rather than change the network structure
randomly, so that most statistical properties of the real net-
work will be kept in the process and the resulting aggregate
network will be the same as the observed one.

Since there are two kinds of activities, commits and com-
munications, in a TOSN the temporal correlation between
them then can be discharged by shuffling the time intervals
in only one of these activities. Here, we adopt this approach,
proposed originally in our previous work [37], to shuffle the
time intervals between commit activities for each developer,
on each file, via the following three steps.

1. Initialization. For each commit link, let there be U
commit activities occurring at times τ1, τ2, . . . , τU , with
τi < τi+1 for i = 1, 2, . . . , U − 1. Then, we ob-
tain an ordered sequence of inter-activity time inter-
vals between them, denoted by ∆τi = τi+1 − τi,
i = 1, 2, . . . , U − 1.

2. Shuffling. We randomly rearrange (permute or shuffle)2

the U − 1 time intervals and obtain a new sequence of
time intervals, denoted by ∆πi, i = 1, 2, . . . , U − 1.
This essentially generates random orderings of idling
periods for the developer on the current file, but ensures
that the distribution of these idling periods are exactly
the same as actually observed.

3. Welding. We weld these time intervals in the new order,
one by one, to obtain a new sequence of commit activity
occurrence time, denoted by π1,π2, . . . ,πU , satisfying

{
πi = τi, i = 1,
πi = πi−1 +∆πi−1, i ≥ 2.

(1)

Note that this null model will not change the number of com-
mit activities and the whole period of development, i.e., from
τ1 to τU , for each developer on each file as well.

We use the same method as above to identify the motifs in
the temporal networks created by this null model. For each
real network, we generate 100 random networks. Denote by
λk the number of Mk motifs in the observed network and by
λ∗

k the average number of Mk motifs and by σ the standard
deviation among them in the random networks. Then, the sig-
nificance of a motif is measured by its Z-score [18], defined
as

χk =
λk − λ∗

k

σ
. (2)

We also compare the occurrence of the four different motifs
among themselves, in order to see which motif is preferred in
the observed network, and thus address the role of communi-
cation in temporal collaboration.

D. Significance of Temporal Motifs

By applying these methods to the 31 observed projects col-
lected from Apache Software Foundation, we get the numbers

2 E.g., by using the sample() function in R.

5

0 10 20 30 40 50 60 70
101

102

103

104

θ (h)

N
u
m

b
er

of
m

ot
if
s

M1

M2

M3

M4

FIG. 3: (Color online) The average numbers of three-motifs M1,
M2, and M3 and two-motifs M4 for the 31 TOSNs at different time
threshold θ, varying from three hours to three days.

of three-motifs M1, M2, and M3 and two-motifs M4 in these
networks. The average number of these motifs (over all 31
TOSNs) at different time thresholds θ are shown in FIG. 3.
We find more temporal motifs M1 than M3 in most projects,
indicating that developers prefer to talk prior to, rather than
following bursts of commit activity. Using the Student’s t-
test, we find the difference is quite significant (p=1.32e-11),
when considering all the cases with different time thresholds
θ = 3, 6, ..., 72 (h) together. It should be noted that here the
number of the same motif across different projects has a rel-
atively large standard deviation, e.g., about 795 for M1 when
θ = 24 (h). This is mainly because these projects are of
quite different size, e.g., there are 72 developers in Axis2 java,
while there are only 3 developers in Bookkeeper.

We generate random TOSNs as null model references, and
then calculate Z-scores for the three-motifs M1, M2, and M3

with Eq. (2). We find that the Z-scores of the three-motifs
in these networks under various time threshold are always
positive and most of them (87% for M1, 90% for M2, and
79% for M3) are larger than 2, indicating that the temporal
three-motifs are more abundant than expected by chance. We
also find that the counts of the two-motif M4 in 28% of the
cases are smaller than random3, and developers avoid tem-
porally co-committing with each other without coordinating.
These results suggest that temporal collaboration is an impor-
tant emergence in these TOSNs and confirm that communi-
cation plays an important role in synchronizing the work of
developers [28].

Interestingly, although the count for each three-motif is
much larger in most observed TOSNs than in the random ones,
the fraction of each three-motif out of all three-motifs are

3 This indicates that the large number of two-motifs shown in FIG. 3 is con-
sistent with a random phenomenon, i.e., developers committed to the same
files independently at close times.

close to each other in the observed and random networks. This
is expected since the time shuffling process does not change
most statistical properties of the TOSNs. For instance, the
shuffling process doesn’t change the total active period length
and the total numbers of communication and commit activities
of any developer, and thus at least the three-motifs involving
their first and last commit activities are kept the same in the
random shuffling process.

IV. TEMPORAL MOTIFS AS FILTERS

As we know, in many cases, communication is vital to
making collaboration effective, i.e., more communication
is always needed when coordinate additional collaborative
work [28]. This can be coarsely validated by calculating the
correlation between aggregate collaboration and social net-
works, both of which can be obtained from the TOSN.

In OSS projects, two developers are linked in the aggregate
collaboration network if they have ever committed to the same
files. To each link we give a weight representing the shared
number of times that they have committed to the same files.
That is, suppose they committed to the same K files, denoted
by fi, i = 1, 2, . . . ,K , and for each file fi, the first developer
commits αi times and the second βi times. Then, we define
the collaborative weight between them as

wC =
K∑

i=1

min{αi,βi}. (3)

For a pair of developers linked in the aggregate collabora-
tion network we also define social weight as the number of
response email messages between them through the mailing
list in Apache, denoted by wE ; it equals zero if no such email
communication is observed. Then, for each TOSN, we have a
list of collaborative weights of links and a list of correspond-
ing social weights, denoted by WC and WE , respectively, and
we calculate their similarity as

R =
⟨WC ,WE⟩

∥WC∥∥WE∥
. (4)

While we indeed findWC andWE are positively correlated,
R = 0.46± 0.33 for the 31 TOSNs, we also find a lot of out-
liers, i.e., pairs of developers who work on a large number of
the same files may seldom contact each other through email,
while developers who communicate a lot with each other may
work alone most of the time and have little overlap between
the files to which they contribute. This phenomenon is reason-
able, since online communities are always highly dynamic,
e.g., many OSS projects last for more than ten years and the
volunteer developers join and quit frequently. Thus, to assert
a collaborative relationship between two developers we need
more than just evidence that they simply contributed to the
same files, i.e., we need also to know whether their activi-
ties occurred close together in time [28]. Moreover, for the
same pair of developers, some communications may be inde-
pendent from collaborative activities, since they may be just

6

(a) (b) (c)

(d) (e) (f)

FIG. 4: (Color online) Aggregate motif networks for six OSS projects: (a) Ant, (b) Axis2 java, (c) Cxf, (d) Derby, (e) Lucene, and (f) Openejb,
with time threshold set to θ = 3 (h). Here, the red circles represent developers and the blue diamonds represent files; the red solid lines
represent the communications between developers, and the gray dashed lines represent the developer commits to files.

chatting or sharing knowledge, rather than discussing how to
solve a current problem in the project. These may introduce
noise and make it challenging to reveal distinct relationship
between communication and collaboration when only using
aggregate TOSNs.

The temporal motifs we propose here capture the temporal
collaborations between developers, and the communication
links in the three-motifs can be considered strongly associ-
ated with the temporal collaborations, since they happen close
in time. In other words, these temporal motifs can be used to
filter structural noise and thus can help identify collaboration
and the associated communications with higher confidence.
We connect these two- and three-motifs to establish an aggre-
gate motif network for each OSS project, where two nodes
are linked if they are connected in at least one temporal mo-
tif, with the link weight representing the times a link appears
in all the motifs. Such a network can be used to visualize
various temporal interactions between individuals, based on
which we can understand them as a system. As examples, the
aggregate motif networks for the six largest OSS projects are
shown in FIG. 4 when the time threshold is set to θ = 3 (h).
It can be seen that a large part of collaborations are indeed ac-
companied with email communications between developers.
Note that these networks are quite different from the aggre-
gate TOSNs, since a number of commit and communication

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ (h)

R

Based on the aggregate TOSN
Based on the aggregate motif network

FIG. 5: (Color online) Correlation between collaborative and so-
cial weights, calculated by Eq. (4), obtained from the aggregate
TOSN and the corresponding aggregate motif networks for all 31
OSS projects (the mean value and the error bars are shown), as func-
tions of the time threshold θ.

activities have been removed in the process of identifying tem-
poral motifs.

7

In addition, for each project, based on the aggregate mo-
tif network, we obtain another pair of aggregate collabora-
tion and social networks, the correlation between which can
be calculated by the same method, as described by Eq. (4),
for comparison. As expected, for most OSS projects, collab-
orative and social weights are positively correlated, no matter
whether they are obtained from the aggregate TOSN or the
aggregate motif network. By comparison, we find that, on av-
erage, the correlation coefficients between the two based on
the aggregate motif networks are much larger (with signifi-
cance of p=0, per the Student’s t-test) than those based on the
aggregate TOSN, and the former is even larger than 0.8 when
θ ≥ 24 (h), as shown in FIG. 5. This validates the utility of
the temporal motifs in information processing, i.e., they can
be treated as efficient information filters to identify temporal
collaborations and further reveal the more distinct relationship
between collaboration and communication.

Note that the collaborative activities of developers and the
associated communications occur at close times, but almost
never at exactly the same time, i.e., developers need some
time to revise the code and reply to emails. As a result, the
time threshold cannot be too small, since the counts of tem-
poral motifs decrease very quickly as the time threshold θ ap-
proaches zero, resulting in the correlationR going to zero. On
the other hand, the time threshold cannot be too large either,
since it would result in temporally distant commits of two dif-
ferent developers being considered collaborative.

V. IDENTIFYING TEAM STRUCTURE

Organizational properties of teams, such as their central-
ization and cohesion, may have significant effects on individ-
ual and group performance [34–37]. Teams in online TOSNs
are typically self-organized, with volunteers who work on the
projects remotely and come and go as they please. Identify-
ing the structure of self-organized teams would, thus, be very
valuable when studying their performance.

Due to the available trace data in OSS TOSNs, this can
be done by reverse engineering the team compositions from
the observations of peoples’ activities. We proceed to do that
here. To reveal a statistically meaningful relationship between
network properties and individual and group performance, in
the rest of the paper, we only consider the most productive,
or top developers, having at least 100 commits, and only keep
projects with at least 5 such developers. After this filtering,
we were left with 21 projects and a total of 220 developers.

A conservative estimate of a team and their activities may
be found in the overlap between their communication and col-
laboration networks. We consider that two developers collab-
orate if they commit to the same files and communicate with
each other, around the same point in time. Given an aggregate
TOSN and the temporal motifs for a group of developer, the
following two networks over the top developers can capture
their team structure.

• Network Γ1: two developers are linked if they co-
commit to at least one file and there is at least one email
message between them.

TABLE I: The network properties, including average degree ⟨k⟩, av-
erage clustering coefficient ⟨CC⟩, and the heterogeneity H , of Γ1

and Γ2 for the six largest OSS projects. For Γ2, the time threshold is
set to θ = 12 (h).

Project
⟨k⟩ ⟨CC⟩ H

Γ1 Γ2 Γ1 Γ2 Γ1 Γ2

Ant 6.06 3.00 0.85 0.75 1.05 1.30

Axis2 java 7.88 2.23 0.85 0.73 1.16 2.02

Cxf 5.89 1.58 0.84 0.73 1.13 2.13

Derby 6.50 3.21 1.00 0.73 1.00 1.22

Lucene 4.73 2.45 0.95 0.73 1.01 1.10

Openejb 3.82 1.73 0.93 0.70 1.11 1.45

• Network Γ2: two developers are linked if they form a
temporal three-motif together with at least one file to
which they have both committed code.

Note that the network Γ2 depends on the time threshold θ,
and satisfies Γ2(θ) ⊆ Γ2(θ +∆) ⊆ Γ1 for any positive θ and
∆, indicating that the links in Γ2 with smaller time threshold
constitute a subset of the links in Γ2 with a larger time thresh-
old; also, the links in Γ2 with any time threshold constitute a
subset of the links in Γ1.

For most of our projects, eventually almost every pair of
top developers ends up communicating with each other and
having co-contributed to same files. However, such nearly
fully connected networks do not capture the real team struc-
ture of these projects, since, e.g., a pair of connected develop-
ers may have contributed to the same files and communicated
with each other at very different times. The temporal mo-
tifs we propose here do not have that weakness, and thus can
better capture the collaboration between developers; hence,
Γ2 is more appropriate to describe the team structure. To
address the difference between Γ1 and Γ2, and also provide
insights for future work in modeling team structure, we com-
pare several of their global properties for the six largest OSS
projects in Table I. We find that, after filtering those indepen-
dent commit and communication activities, the team structure
gets much sparser, while its clustering coefficient keeps rela-
tively large for all the considered projects. This indicates that
the developers in each of these projects tend to cluster together
even when the average degree of the network is relatively low.
Moreover, using the degree distribution, we define the hetero-
geneity4 of a network as H = ⟨k2⟩/⟨k⟩2. We find that Γ2

is more heterogeneous than Γ1, i.e., the individuals are more
different in Γ2, in terms of node degree.

These results are similar for varied time thresholds and sug-
gest that both local and global topological properties of Γ2 can
be used to better characterize the individuals and the group,
respectively, than those of Γ1, and thus may be stronger pre-
dictors of their other properties, such as productivity.

4 This measurement is also important to determine the critical point to sus-
tain reaction/epidemic activity on a network [53].

8

A. Centrality and Individual Productivity

In a group, a person is central if he/she is the most popular
and gets the most attention [36]. Centrality thus mirrors social
status. A number of centrality measures have been devised,
the most generic being the degree of a node in a social net-
work [37]. More specific ones, e.g., closeness and between-
ness, have been used to measure the centrality of a person
in scientific collaboration networks [39]. There, the close-
ness of a node, defined as the average distance from the node
to all other nodes, is a measure of information transmission
from a person to all others, whereas betweenness is a mea-
sure of a person’s control over information flowing between
others. More generally, Borgatti and Everett [54] proposed
a series of degree-like, closeness-like, and betweenness-like
centralities by considering different kinds of network paths,
or by expanding the definition of network distance. Rothen-
berg et al. [55] used eight such centrality measures to study
the role of network structure in disease transmission. They
found that although these measures differ in their theoreti-
cal formulation, they produce similar epidemiological results:
non-central persons are likely to be HIV-positive in their low-
prevalence social network. To measure centrality we use the

normalized degree, k̃, defined as the ratio of node degree to
the maximum degree in a project network. We do this since
we consider all top developers from all the projects together.
In that setting, the normalized degree fixes the overall spread
between node degrees across different projects. We choose
node degree because it is easy to calculate and the definition
is straight-forward in both connected and unconnected net-
works; also, in many cases, these measures of centrality are
correlated with each other and thus the use of alternatives may
not influence the results very much. Note that, as suggested by
Sarigöl et al. in their recent study on scientific coauthorship
networks [56], although no single centrality measure could
outperform the others, adopting a combination of many com-
plementary notions of centrality has the potential to improve
the precision of the model. This is partly because the social
status in the collaboration network is multi-faceted and thus
can be reflected by different network measures.

To study the relationship between productivity (lines of
codes, LoC, per day) and centrality, with the number of com-
mits, denoted by C, considered as a confound, we set up two
multiple linear regression models for productivity of a devel-
oper as a function of the number of commits and of their cen-
trality, one model for Γ1 and another for Γ2. We find that
the models based on Γ2 under various time thresholds are
always better than those on Γ1, although the R-squared of
the model is only slightly better, i.e., 0.2276±0.0048 versus
0.2218. Note that this slight difference may still indicate quite
different roles of centrality in the two models, since central-
ity may have totally different relative importance (we use the
function calc.relimp() in R) in different cases, i.e., it explains
different fractions of variance in the two models.

For example, the model and results for Γ2 with the time
threshold θ = 12 (h) are shown in Table II (we used the func-
tion lm() in R); the multiple R-squared equals 0.2333 and the
residual standard error (RSE) equals 1.248. We can see that,

TABLE II: Multiple linear regression model for the individual pro-
ductivity against the number of commits and the centrality in Γ2 with
θ = 12 (h).

Variabes Estimate Std. Error z value Pr(> |z|)

(Intercept) 1.3153 0.5530 2.379 0.0182

ln(C) 0.6187 0.0995 6.215 2.59e-09

k̃ 0.6350 0.2899 2.191 0.0295

TABLE III: Multiple linear regression model for the average produc-
tivity in a team against the average number of commits, team size,
and team cohesion, by considering all the cases in Γ2 together.

Variable Estimate Std. Error z value Pr(> |z|)

(Intercept) 2.4729 0.2969 8.330 7.80e-16

ln(C) 0.4451 0.0478 9.317 <2e-16

n 0.0309 0.0054 5.684 2.24e-08

φ 1.0110 0.1417 7.137 3.37e-12

when controlling for the number of commits, centrality k̃ is
a significant predictor in this model and its relative signifi-
cance is 24.4%. By comparison, centrality isn’t significant in
the model based on Γ1, and its relative significance is lower,

11.8%. In TABLE II, the positive coefficient for k̃ means that
the effect of increased centrality is more LoC per day, when
the numbers of their commits are comparable. Note that here
we log the productivity and the number of commits to stabilize
the variance and improve the model fit.

B. Cohesion and Team Productivity

Next, we study the relationship between social connectiv-
ity, or cohesion, in a team and the team’s productivity per-
formance. To calculate a team’s cohesion, we use a measure
similar to that introduced by Yang and Tang [36]: the ratio of
positive mutual relationships to all possible ones. Since most
email communications in OSS are positive, e.g., encouraging
others to do more extensive work [28], we approximate team
cohesion by the link density in the network.

φ =
2

n(n− 1)

n∑

i=1

ki, (5)

where n is the team size and ki is the degree of node i. For
each project, we also calculate the team productivity as the
average productivity of the team members.

We use a multiple linear regression to model the average
productivity of developers in a team as a function of cohe-
sion, φ, in Γ2

5, while controlling for team size n and average

5 Model on Γ1 had consistently poorer fit, i.e., none of the variables, includ-
ing the number of commits, team size, and team cohesion, is significant in
this case, so we omit it here.

9

number of commits C. Since developers have different com-
mit and communication rhythms, to increase statistical power,
we pooled all projects in Γ2 with different time thresholds
θ = 3, 6, . . . , 72 (h) into a single model. Note that vary-
ing time threshold only influences the cohesion but has no
effect on team productivity, therefore, we expect pooling all
data into a single model is appropriate, with little threat to
the validation of the models. The results are shown in Ta-
ble III, where the multiple R-squared equals 0.2681 and the
RSE equals 0.56. We find that, while controlling for the av-
erage number of commits and team size, team cohesion has
a significant positive effect on the average productivity of de-
velopers, indicating that developers in a more cohesive team
will, statistically, have higher productivity.

These results about the relationship between network prop-
erties and individual and team productivity validate again the
potential of the temporal motifs technology, i.e., the properties
in the Γ2 network can be used to better characterize individu-
als and groups in OSS projects, and, thus, might be appropri-
ate to describe their team structures.

VI. CONCLUSION

In this study, we proposed a methodology for identifying
temporal motifs composed of two people and an artifact in
task-oriented social networks. Such temporal motifs can be
used to filter out independent activities, and thus help to iden-
tify temporal collaborations between people, find the associ-
ated communications, reveal the distinct dependency between
the two, and further infer the latent team structure. The time
threshold is always an important parameter in the studies of
temporal networks. Here, the appropriate time threshold is
based on the Goldilocks approach: not too small, since peo-
ple need some time to respond to an event; and not too large,
since two events can hardly be considered as associated with

each other if they are apart from each other for a long time.
We thus vary it from three hours to three days.

We find that temporal motifs are an important emergence
in OSS projects, i.e., the numbers of temporal motifs in real
TOSN are always significantly larger than those in the ran-
domized networks. More interestingly, based on the team
structure inferred from the temporal motifs, we find that the
more central individuals and the more cohesive teams are
more productive. The results are less significant if we use
the team structure derived from the aggregate TOSN instead.
This is a validation for using temporal motifs, instead of an
aggregate TOSN, to describe team structure.

Here, we only considered the basic TOSN that contains two
types of nodes and two types of links. However, people in
general may use different communication tools, such as tele-
phone, twitter, MSN and so on, to chat or coordinate different
kinds of work. More general nodes and links will certainly
lead to more varied temporal motifs in TOSNs. More broadly,
the proposed techniques can be easily generalized for use in
other temporal networks, containing different types of nodes
and different types of links, although the meaning of the tem-
poral motifs might be domain specific. They can also be used
to reason about the causal relationship between different kinds
of activities, which can provide useful insights for the model-
ing of layered networks.

Acknowledgments

The authors gratefully acknowledge support from the Air
Force Office of Scientific Research, award FA955-11-1-0246,
and the National Natural Science Foundation of China (Grant
No. 61004097, 61273212), the China Scholarship Council
(CSC), and the China Postdoctoral Science Foundation (Grant
No. 2014M551770).

[1] Q. Xuan, F. Du, and T. J. Wu, Chaos 19, 023101 (2009).
[2] M. E. J. Newman, S. Forrest, and J. Balthrop, Phys. Rev. E 66,

035101 (2002).
[3] A. Vespignani, Nat. Phys. 8, 32 (2012).
[4] G. Kossinets and D. J. Watts, Science 311,88(2006).
[5] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca, Science

323, 1165821 (2009).
[6] J. M. Kleinberg, Nature, 406, 845 (2000).
[7] P. S. Dodds, D. J. Watts, and C. F. Sabel, Proc. Natl. Acad. Sci.

USA 100, 12516 (2003).
[8] Q. Xuan and V. Filkov, In Handbook of Human Computation

(pp. 791-802). Springer, New York, 2013.
[9] A. Mockus, R. T. Fielding, and J. D. Herbsleb, ACM Trans-

actions on Software Engineering and Methodology 11, 309
(2002).

[10] J. Giles, Nature, 438, 900 (2005).
[11] B. Vasilescu, V. Filkov, and A. Serebrenik, In Proceedings of

the 2013 IEEE International Conference on Social Computing,
pp. 188-195, Alexandria, VA, 2013.

[12] D. J. Watts, Small Worlds: The Dynamics of Networks between

Order and Randomness, Princeton University Press, Princeton,
NJ, 1999.

[13] A. -L. Barabási, Science 325, 412 (2009).
[14] S. S. Shen-Orr, R. Milo, S. Mangan, and U Alon, Nat. Genet.

31, 64 (2002).
[15] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii,

and U. Alon, Science 298, 824 (2002).
[16] N. J. Guido, X. Wang, D. Adalsteinsson, D. McMillen, J. Hasty,

C. R. Cantor, T. C. Elston, and J. J. Collins, Nature 439 ,856
(2006).

[17] T. Kohonen, Biol. Cybern. 43, 59 (1982).
[18] S. Valverde, and R.V. Solé, Phys. Rev. E 72, 026107 (2005).
[19] P. Holme and J. Saramäki, Phys. Rep. 519, 97 (2012).
[20] R. K. Pan and J. Saramäki, Phys. Rev. E 84, 016105 (2011).
[21] J. -P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K.

Kaski, J. Kertész, and A. -L. Barabási, Proc. Natl. Acad. Sci.
USA 104, 7332 (2006).

[22] S. Lèbre, J. Becq, F. Devaux, M. P. H. Stumpf, and G. Le-
landais, BMC Syst. Biol. 4, 130 (2010).

[23] M. Starnini, A. Baronchelli, A. Barrat, and R. Pastor-Satorras,

10

Phys. Rev. E 85, 056115 (2012).
[24] R. Pfitzner, I. Scholtes, A. Garas, C. J. Tessone, and F.

Schweitzer, Phys. Rev. Lett. 110, 198701 (2013).
[25] D. Braha, and Y. Bar-Yam, Adaptive Networks: Theory, Mod-

els and Applications. T. Gross, H. Sayama Eds., Springer, 39
(2008).

[26] B. Blonder and A. Dornhaus, PLoS One 6, e20298 (2011).
[27] L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki,

J. Stat. Mech. -Theory and Exp. 2011, P11005 (2011).
[28] Q. Xuan and V. Filkov, In Proceedings of the 36th International

Conference on Software Engineering, pp. 222-233, Hyderabad,
India, 2014.

[29] Q. Xuan and T. J. Wu, Phys. Rev. E 80, 026103 (2009).
[30] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S.

Havlin, Nature 464, 1025-1028 (2010).
[31] J. Gómez-Gardeñes, I. Reinares, A. Arenas, and L. M. Florı́a,

Sci. Rep. 2, 620 (2012).
[32] S. Gómez, A. Dı́az-Guilera, J. Gómez-Gardeñes, C. J. Pérez-

Vicente, Y. Moreno, and A. Arenas, Phys. Rev. Lett. 110,
028701 (2013).

[33] Q. Xuan, F. Du, L. Yu, and G. Chen, Phys. Rev. E 87, 032809
(2013).

[34] S. Wuchty, B. F. Jones, and B. Uzzi, Science 316, 1036 (2007).
[35] R. Guimerà, B. Uzzi, J. Spiro, and L. A. N. Amaral, Science

308, 697 (2005).
[36] H. L. Yang and J. H. Tang, Information & Management 41, 335

(2004).
[37] Q. Xuan, M. Gharehyazie, P. Devanbu, and V. Filkov, In Pro-

ceedings of 2012 ASE/IEEE International Conference on Social
Informatics, pp. 78-85, Washington D. C., 2012.

[38] P. Gleiser and L. Danon, Adv. Complex Syst. 6, 565 (2003).
[39] M. E. J. Newman, Phys. Rev. E 64, 016131 (2001).
[40] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001).
[41] M. Pinzger and H. C. Gall, In Collaborative Software Engineer-

ing, pp. 265-284, Springer, Berlin Heidelberg, 2010.
[42] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu,

In Proceedings of the 16th ACM SIGSOFT International Sym-

posium on Foundations of software engineering, pp. 24-35, At-
lanta, 2008.

[43] C. Gutwin, R. Penner, and K. Schneider, In Proceedings of
the 2004 ACM Conference on Computer-Supported Coopera-
tive Work, pp. 72-81, Chicago, 2004.

[44] T. Zhou, J. Ren, M. Medo, and Y. C. Zhang, Phys. Rev. E 76,
046115 (2007).

[45] D. H. Sonnenwald, Design Stud. 17, 277 (1996).
[46] R. Kraut, C. Egido, and J. Galegher, In Proceedings of the 1988

ACM conference on Computer-Supported Cooperative Work,
pp. 1-12, Portland, 1988.

[47] D. Bertram, A. Voida, S. Greenberg, and R. Walker, In Pro-
ceedings of the 2010 ACM conference on Computer-Supported
Cooperative Work, pp. 291-300, Savannah, 2010.

[48] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan, In Proceedings of the 2006 International Working Con-
ference on Mining Software Repositories, pp. 137-143, Shang-
hai, China, 2006.

[49] L. D. F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas,
Adv. Phys. 56, 167 (2007).

[50] Z. Zhang, Y. Qi, S. Zhou, W. Xie, and J. Guan, Phys. Rev. E 79,
021127 (2009).

[51] Q. Xuan, A. Okano, P. Devanbu, and V. Filkov, In Proceedings
of the 22nd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering, Hyderabad, India, 2014.

[52] X. Liang, S. Yanchuk, and L. Zhao, Phys. Rev. E 88, 012910
(2013).

[53] Q. Xuan, F. Du, T. J. Wu, and G. Chen, Phys. Rev. E 82, 046116
(2010).

[54] S. P. Borgatti and M. G. Everett, Social Networks 28, 466
(2006).

[55] R. B. Rothenberg, J. J. Potterat, D. E. Woodhouse, W. W. Dar-
row, S. Q. Muth, and A. S. Klovdahl, Social Networks 17, 273
(1995).

[56] E. Sarigöl, R. Pfitzner, I. Scholtes, A. Garas, and F. Schweitzer,
EPJ Data Science, 3, 1 (2014).

