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Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have
been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant
in transferring different kinds of particles. However, in many self-organized systems, different particles may
have their own private channels to keep their purities. Such division of links often significantly influences the
underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special
reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps
β → α and α + β → 2β, on duplex networks where links are classified into two groups: α and β links used
to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a
β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity
is independent of the network topology if there is no correlation between the degree sequences of the two
subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or
negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be
promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of
different types of diffusion links.
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I. INTRODUCTION

The world is fully filled with different levels of particles,
such as molecules, cells, organisms, even people and computer
documents, etc. These particles diffuse in certain spaces
through random walks or by definite forces. At the same
time, reactions take place when particles on the same level
meet in a local world and are transformed into each other with
certain probabilities. Over the past few decades, such reaction-
diffusion (RD) systems have been studied extensively [1–3],
providing good explanations for many spatially distributed
dynamics existing in various areas, such as chemical reactions
[4], biological pattern formation [5], population evolution
[6], epidemics [7], computer virus spreading [8], and so on.
Observing that a wide variety of phenomena involve coupling
effects, e.g., in coupled chemical reactors [9], protein-protein
networks [10], neural networks [11], social networks [12], etc.,
researchers have paid more and more attention to RD dynamics
of spatially discrete systems, which are relatively easier to be
realized by advanced computer technologies.

Recent studies have revealed that many real-world complex
networks possess heterogeneous structures characterized by
power-law degree distributions [13–15], where the degree of
a node is defined as the number of its directly connected
neighbors, attributed first to Barabási and Albert [13]. Further
experiments [16–18] demonstrated that RD dynamics on such
heterogeneous networks may behave totally differently from
those on regular lattices, which suggests that RD dynamics
are not only determined by the reaction equations involved,
but they are also significantly influenced by the structures of
the diffusion spaces. For example, it was found that epidemic
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described by the well-known susceptible-infected-susceptible
(SIS) model [19] may be sustained on heterogeneous networks
even with a vanishing density of individuals, which, however,
is not so on regular lattices. This is not surprising because most
of these studies on RD processes adopt a common hypothesis:
every link in a diffusion network can be used to transfer
all kinds of particles, although sometimes different kinds of
particles are assumed to have different diffusion rates. This
hypothesis ensures that different kinds of particles, uniformly
distributed initially, will be concentrated on several nodes of
large degrees in a heterogeneous network through a random
walk process, and thus will significantly improve the reaction
activity.

Such simplification is reasonable in disordered systems
where each particle is allowed to diffuse in all directions with
the same probability. However, it is more practical to consider
those self-organized systems in which different kinds of
particles may have their preferences to be transferred through
certain private channels. For example, it was revealed that
national highways and interprovincial freeways played more
important roles than railways to spread severe acute respiratory
syndrome (SARS) in mainland China by analyzing the cases
in 345 counties of three provinces near Beijing, i.e., Hebei,
Shanxi, and the Inner Mongolia Autonomous Region [20].
This indicates that many people preferred to use buses or cars to
return home when the epidemic broke out in Beijing, because
these means of transportation are more flexible in time and
thus also made the passengers less supervised. Meanwhile,
Askar et al. [21] found that high-efficiency particulate air
(HEPA) filtration is frequently used in airplanes but not in
ground transport vehicles, which may lead to higher disease
transmission through ground transport systems than airplanes.
Besides, microscopically, an infected individual may infect
others by different types of contact with different probabilities,
as pointed out by Stegeman et al. when they studied interherd
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transmission of classical swine fever virus during the 1997–
1998 epidemic in the Netherlands [22].

In order to simplify the problem and emphasize the prefer-
ences of links on transferring certain kinds of particles, here
we just consider the situation in which links are specialized to
transfer certain kinds of particles. In particular, when consider-
ing SIS dynamics on a duplex network with variant links, i.e.,
α and β links used to transfer α and β particles, respectively,
these two kinds of particles may be concentrated on different
central nodes with different probabilities, depending on the
correlation between the degree sequences of the specialized
subnetworks used for transferring different kinds of particles.
This is quite different from the situation on heterogeneous
networks with identical links. Consequently, such division of
links in heterogeneous networks may further influence RD
dynamics and thus has to be carefully investigated so as to
better understand the many complex phenomena in real-world
self-organized systems.

The rest of the paper is organized as follows. In Sec. II,
a special RD process described by the basic SIS model on
simplex networks is reviewed, which is then studied on duplex
networks composed of two types of links. In Sec. III, some
analytic results about critical points of the phase transition
from an absorbing phase to an active phase of the RD process
on duplex networks are obtained. Then the RD process is
studied on duplex scale-free networks and duplex networks
with modules in Secs. IV and V, respectively, where a series
of analytic and simulated results are provided. The work is
finally concluded in Sec. VI.

II. REACTION-DIFFUSION PROCESSES
ON DUPLEX NETWORKS

First, a basic reaction mechanism involving only two kinds
of particles is reviewed, which is composed of the following
two reactions:

β → α, (1)

α + β → 2β. (2)

This scheme is also known as the SIS model [23] and
has been extensively studied in physics and mathematical
epidemiology [18,24–26], where α particles represent normal
particles (healthy individuals) and β particles represent active
particles (infected individuals). Since the particles are neither
regenerated nor disappeared, but only transformed from one
to another, the total number of particles does not change in
the process. Generally, α and β particles at each node react
with each other according to Eqs. (1) and (2) at reaction
rates μ1 and μ2, respectively. After the reaction process, the
particles undergo a diffusion process as follows. Each particle
on node vi with degree ki jumps into one of its neighbors
with probability 1/ki , and suppose that the two kinds of
particles have the same unitary diffusion rates. In this case,
by the mean-field theory, it was shown [19] that the transition
from an absorbing phase (no β particles) to an active phase
(with sustained β particles) occurs when ρ = ρc = μ1/(Hμ2),
where H = 〈k2〉/〈k〉2 is the heterogeneity of the network.
Since it is always satisfied that 〈k2〉 � 〈k〉2 for all networks,
i.e., H � 1, where 〈k2〉 = 〈k〉2 is obtained only when each pair
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FIG. 1. (Color online) Suppose that an RD process involves α

and β particles. A duplex RD network has two types of links, i.e., α

links (dashed red lines) to transfer α particles only, and β links (solid
green lines) to transfer β particles only. If pairwise nodes are linked
by both α and β links, it is simply considered that they are linked by
common links (bold blue lines) to transfer α and β particles together.
The types of lines for the three kinds of links keep the same in the
following network figures.

of nodes has the same degree, the critical point will never be
larger than μ1/μ2 on the networks with simplex links.

In this paper, the SIS model is studied on a duplex network
with two groups of links: α links to transfer α particles
and β links to transfer β particles, which, along with the
corresponding nodes, consist of an α subnetwork and a β

subnetwork, respectively. Note that a pair of nodes may be
linked by both α and β links; in such a situation, it is simply
considered that they are linked by a common link which can
transfer both α and β particles. Denote by kα,i and kβ,i the α

degree and β degree of node vi , representing the numbers of its
neighbors in the α subnetwork and β subnetwork, respectively.
For example, the node vi in the duplex RD network shown in
Fig. 1 has kα,i = 3 and kβ,i = 5. In each node, the spontaneous
process β → α simply consists of turning each β particle into
an α particle with rate μ1. Since a type-I reaction introduced
in [19] is considered here, the α + β → 2β process means
that each α particle may react with all of the β particles in the
same node and each reaction occurs with rate μ2. Note that
here the diffusion rates of α particles and β particles are set
to be the same, i.e., η = 1, for simplicity, which means that
all the α particles (or β particles) in a node at present will
jump into its neighboring nodes in the α subnetwork (or β

subnetwork) at the next time step. Moreover, the numbers of
α and β particles at a node can be any non-negative integers,
known as the bosonic process [18,19].

Suppose that there are V (kα,kβ) nodes of α-degree kα and
β-degree kβ in the network, which follow a joint distribution
P (kα,kβ). Denoted by ρα(kα,kβ) and ρβ(kα,kβ), the average
densities of α particles and β particles, respectively, among
these nodes, satisfy

ρα(kα,kβ) = Nα(kα,kβ)

V (kα,kβ)
, ρβ(kα,kβ) = Nβ(kα,kβ)

V (kα,kβ)
, (3)

with Nα(kα,kβ) and Nβ(kα,kβ) denoting the total numbers
of α and β particles, respectively, in these nodes. The
average densities of α and β particles of the whole network
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then is given by ρα = ∑
kα

∑
kβ

P (kα,kβ)ρα(kα,kβ) and ρβ =∑
kα

∑
kβ

P (kα,kβ)ρβ(kα,kβ), respectively. The quantities of
ρα(kα,kβ) and ρβ(kα,kβ) vary with respect to the nodes of
different α degrees and β degrees, and their time evolution
can be expressed by a set of ordinary differential equations
depending on the reaction kernel defined by �(kα,kβ) =
ρα(kα,kβ)ρβ(kα,kβ). Then the critical point of the phase
transition can be obtained by solving these equations.

In particular, RD processes on duplex networks are carried
out by the Monte Carlo method as follows:

(1) Initialization. Numbers Vρα(0) of α particles and
Vρβ(0) of β particles are randomly distributed on a network
containing V nodes, with a particle density ρ = ρα(0) + ρβ(0).
The results are independent of the particular initial ratio
ρα(0)/ρβ(0), apart from early time transients.

(2) Reaction. At each time t , numbers nα,i(t − 1) of α

particles and nβ,i(t − 1) of β particles in each node vi react
with each other according to Eqs. (1) and (2). That is, each
β particle in node vi is transformed to an α particle with
probability μ1 and the reverse takes place with probability
1 − (1 − μ2)nβ,i (t−1) [19]. This corresponds to the average
probability of an α particle being involved in Eq. (2) with
any of the β particles on the same node. Here, nα,i(t − 1) and
nβ,i(t − 1) can be any non-negative integers including zero
when considering the bosonic RD process [18].

(3) Diffusion. After reactions, every α (or β) particle in
each node of α-degree kα (or β-degree kβ) jumps into one of
its neighbors in an α subnetwork (or β subnetwork) with the
same probability 1/kα (or 1/kβ). Then, after a round of RD
process, the numbers of α particles and β particles in node vi

are updated to be nα,i(t) and nβ,i(t), respectively.

III. CRITICAL POINTS OF THE PHASE TRANSITION

Suppose there are no degree correlations between linked
nodes in the α subnetwork and β subnetwork, respectively.
Then, by the mean-field theory [27], the stationary states of
the system are given by (see Appendix A)

ρα(kα,kβ) = kα

〈kα〉 [μ1ρβ + ρα − μ2�], (4)

ρβ(kα,kβ) = kβ

〈kβ〉 [(1 − μ1)ρβ + μ2�], (5)

with � = ∑
kα

∑
kβ

P (kα,kβ)�(kα,kβ). Equations (4) and (5)
suggest that the densities of α particles and β particles at nodes
are proportional to their α degree and β degree, respectively.
Since the generation of β particles is influenced by the product
of the local densities of α particles and β particles, more active
particles can be observed on heterogeneous networks only
when their α-degree and β-degree sequences are positively
correlated, i.e., nodes with larger α degrees also possess larger
β degrees.

Denoting by ρ the average density of the two kinds of
particles in the network, satisfying ρ = ρα + ρβ , then the
critical point ρ of the phase transition to sustain β particles is
obtained as (see Appendix A)

ρc = μ1

μ2

〈kα〉〈kβ〉
〈kαkβ〉 = μ1

μ2

V 〈kα〉〈kβ〉
SαSβ

T
, (6)

where Sα = [kα,1,kα,2,. . .,kα,V ] and Sβ = [kβ,1,kβ,2,. . .,kβ,V ]
are the α-degree and the corresponding β-degree sequences,
respectively, of the network. This indicates that the critical
point equals μ1/μ2, independent of the network structure,
when there is no correlation between the two degree
sequences. Moreover, the value of ρc decreases if the two
degree sequences are positively correlated but increases if they
are negatively correlated. Then ρc is minimized or maximized
just by varying the correlation between the α-degree and
β-degree sequences, if other parameters are unchangeable,
i.e., ρc is minimized if the two sequences are in the same order,
while it is maximized if one of them is inversely ordered.
Moreover, when the α degree and β degree of each node are
changeable in the ranges [Lα,Uα] and [Lβ,Uβ], respectively,
satisfying that the average α degree and β degree are fixed,
the minimum critical point is obtained when the two degree
sequences take on the following forms:

Sα = [Lα, . . . ,Lα,kα,ν,Uα, . . . ,Uα], (7)

Sβ = [Lβ, . . . ,Lβ,kβ,ω,Uβ, . . . ,Uβ], (8)

while the critical point is maximized by inversely ordering
only one of the degree sequences presented in Eqs. (7) and (8).

Suppose that the α degree and β degree of each node are in
the same range [L,U ] and the α subnetwork and β subnetwork
have the same average degree, i.e., 〈kα〉 = 〈kβ〉 = R. If U �
R > L, then the minimum and maximum critical points are
estimated by

ρc, min ≈ μ1

μ2

R2

U (R − L)
, (9)

ρc, max ≈ μ1

μ2

R2

2LR − L2
, (10)

respectively (see Appendix B). It should be noted that these
results are obtained under the assumption of no degree
correlations in the two subnetworks. However, this assumption
cannot be held any longer if the lower bound of degree L is
very small (i.e., close to 1), i.e., both the α subnetwork and
β subnetwork have a similar quasistar structure, and thus the
above results need to be further modified. The two quasistar
subnetworks are merged into a unique quasistar network, as
shown in Fig. 2(c), if the α-degree and β-degree sequences
are positively correlated, while they are merged into a network
having two modules with the nodes in each module being
connected by the same type of links and the nodes of different
modules being connected by common links, as shown in
Fig. 2(d), if the two degree sequences are negatively correlated.

Since both the networks are composed of two classes of
nodes, i.e., kernel nodes and leaf nodes in the quasistar network
and nodes of different modules in the modular network, and
the nodes of the same class are completely identical, it is
equivalent to study the RD processes on networks with only
two coupled nodes, denoted by A and B, as shown in Figs. 2(e)
and 2(f), respectively. Suppose there are the same number of
nodes in the two classes. Then, in case I, the diffusion rate of
particles from B to A is equal to 1, since all the particles in the
leaf nodes at present will jump into kernel nodes at the next
time step based on the assumption that α and β particles have
the same diffusion rate η = 1 on the initial diffusion network,
while that from A to B is just equal to θ = L/U , that is, only
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FIG. 2. (Color online) A duplex RD network can be obtained
by merging different subnetworks connected through the same
types of links after a node matching process. Suppose there are
two subnetworks: (a) quasistar α-subnetwork and (b) quasistar
β-subnetwork. They are merged into (c) a unique quasistar network
where each link can transfer both α and β particles, if the α-degree and
β-degree sequences are positively correlated, while they are merged
into (d) a network with two modules, if the two degree sequences
are negatively correlated. Both the networks are composed of two
classes of nodes, i.e., kernel nodes and leaf nodes in the quasistar
network and nodes of different modules in the modular network. The
nodes of same class can be considered as a supernode since they are
completely identical. Then, alternatively, we only need to study the
RD processes on networks with two coupled nodes in (e) case I and
(f) case II, respectively.

a small fraction of particles in the kernel nodes will jump into
the leaf nodes at each time step. The situation in case II is a
little more complicated, where the diffusion rate of β particles
from A to B and that of α particles from B to A are equal to
1, while the diffusion rate of α particles from A to B and that
of β particles from B to A are equal to θ = L/U , as shown
in Fig. 2(f). By solving the RD processes on such directed
networks with only two coupled nodes, Eqs. (9) and (10) are
modified as (see Appendix C)

ρc,min = μ1

μ2

1 + θ

2
, (11)

ρc,max =
(

1 + 1

θ

)⎡
⎣

√
4 + μ2

1(1 − θ )2 + μ1(1 + θ ) − 2

4μ2

⎤
⎦ .

(12)

As θ → 0, Eq. (11) predicts that ρc,min → μ1/2μ2, which is
the same as that obtained by Eq. (9), considering that here θ =
L/U and R = (L + U )/2. However, Eq. (12) can be rewritten

as

ρc,max = μ1

μ2

(1 + θ )2

4θ
+

(1 + θ )
[√

4 + μ2
1(1 − θ )2 − 2

]
4θμ2

,

(13)

where the value calculated by the first term is equal to that
obtained by Eq. (10) and thus the maximum critical point
derived by Eq. (12) is always larger than that predicted by
Eq. (10), as θ tends to zero.

Since many real-world networks possess random rather
than deterministic structures [28], next, RD processes will
be studied on more realistic random networks to investigate
the effect of α-degree and β-degree correlation on the phase
transition.

IV. PHASE TRANSITION ON DUPLEX SCALE-FREE
NETWORKS

It has been revealed that many real-world networks in-
cluding traffic networks are scale-free networks characterized
by a power-law degree distribution, i.e., P (k) ∼ k−γ . Since
different types of transportation systems may have different
levels of risk to spread epidemics, it is becoming crucial
to study the phase transition of SIS dynamics on duplex
scale-free networks. In this paper, duplex scale-free networks
with different correlations between α-degree and β-degree
sequences are created by the following three steps:

(1) Initialization. Two independent networks Gα and Gβ

with same number of nodes are created by the uncorrelated
random scale-free network model proposed by Catanzaro
et al. [29], which are determined by three parameters, i.e.,
the number of nodes V , the lower bound of degrees m, and the
exponent of degree distribution γ . Meanwhile, the list of nodes
in each network is ordered by their degrees, i.e., kα,i � kα,j

and kβ,i � kβ,j if i > j for i,j = 1,2, . . . ,V .
(2) Matching. Denote by {vα,1,vα,2, . . . ,vα,V } and

{vβ,1,vβ,2, . . . ,vβ,V } the lists of ordered nodes in the networks
Gα and Gβ , respectively. With probability p, node vα,i in
the network Gα is matched to vβ,V −i in the network Gβ ;
otherwise, it is matched to vβ,i .

(3) Merging. A new duplex RD network Gp, with α- and
β-degree correlation equal to 1 − p, is established by merging
each pairwise matched nodes as one node and inheriting the
associated α and β links.

Based on this mechanism, the α-degree and β-degree
sequences of the duplex RD network Gp tend to be positively
correlated as p → 0 and tend to be negatively correlated as
p → 1. For example, Fig. 3 provides several such duplex RD
networks with different values of p.

In order to validate the analytic result represented by
Eq. (6), we do a number of simulations on duplex scale-free
RD networks with different sizes and different correlations
between α-degree and β-degree sequences. Here, the param-
eters to create the initial networks Gα and Gβ are set to
be m = 2, γ = 2, and V = 500,1000,2000, respectively. For
each value of p, p = 0,0.1,0.2, . . . ,1, and each network size, a
corresponding RD network is obtained. In the beginning of the
RD process, the same numbers of α particles and β particles
are randomly distributed on the RD network. When the RD
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p=0 p=0.5 p=1

Increase p

FIG. 3. (Color online) The process to generate duplex RD
networks with different correlations between α-degree and β-degree
sequences, which is controlled by the parameter p. Here, the
parameters to create the initial networks Gα and Gβ are set to be
m = 2, γ = 2, V = 50.

process on the network is relatively steady after sufficient time
steps (106 here), it is implemented in parallel an extra 104 time
steps with the reaction rates μ1 = 0.1 and μ2 = 0.05. Then,
the average density of β particles in this 104 times as well as
the variance is recorded.

The phase transitions of RD processes on duplex scale-
free networks with V = 1000 nodes and different p =
0,0.2,0.5,0.8,1 are shown in Fig. 4(a), where we can see
that the process undergoes a phase transition ρc < μ1/μ2 = 2
as the α-degree and β-degree sequences of the duplex RD
network tend to be positively correlated (p → 0), while it
undergoes a phase transition ρc > μ1/μ2 = 2 as the two
degree sequences of the duplex RD network tend to be
negatively correlated (p → 1). This result is consistent with

our theoretical analysis. In fact, for heterogeneous networks,
positive correlation between two degree sequences means that
the nodes with high α degree always have high β degree, so
that most α and β particles contact with each other in these
dual-hub nodes. In such a situation, the phase transition to
sustain β particles is suppressed, since there are always a
small number of nodes with enough α and β particles to keep
the RD process alive, even for a vanishing average density of
particles. On the other hand, when the two degree sequences
are negatively correlated, the hubs in the α subnetwork and
those in the β subnetwork are separated, which decreases the
probability that α and β particles contact each other. Therefore
a quite high average density of particles is needed to generate
β particles, leading to an extension of the phase transition.

In order to provide more quantitative comparison between
analytic and simulated results, we also calculate the analytic
critical points of phase transitions on duplex scale-free net-
works with different size by Eq. (6), and meanwhile estimate
the corresponding simulated critical points from simulation
results. In particular, the analytic and simulated critical points
as functions of p for duplex scale-free networks including
different numbers of nodes, i.e., V = 500, V = 1000, and
V = 2000, are shown in Figs. 4(b)–4(d), respectively, where
we find that the analytic and simulated critical points have the
same trend as p increases. It should be noted that the analytic
results are obtained by applying the mean-field theory with
the assumption that the network size is sufficiently large; as a
result, there may be a slight gap between the real critical point
and that obtained by the mean-field theory when the network
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FIG. 4. (Color online) (a) Phase transitions for RD processes on duplex scale-free networks with m = 2, γ = 2, V = 1000, and different
p = 0,0.2,0.5,0.8,1. (b)–(d) The analytic and simulated critical points as functions of p for duplex scale-free networks including different
numbers of nodes, i.e., V = 500, V = 1000, and V = 2000, respectively.
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size is not large enough, as shown in Fig. 4(b), which will
disappear gradually as the network size increases, as shown in
Figs. 4(c) and 4(d). Denote by ρA

c (p) and ρS
c (p) the analytic

and simulated critical points of phase transition on the duplex
network with parameter p and define the relative difference
between ρA

c (p) and ρS
c (p) by

ε(p) =
∣∣ρA

c (p) − ρS
c (p)

∣∣
ρA

c (p)
× 100%. (14)

Then, for Np cases of different p, the average relative
difference between the analytic and simulated critical points
is calculated by

ε =
∑

p ε(p)

Np

. (15)

Here, we have Np = 11, and such average relative difference
ε is equal to 10.0%, 5.3%, and 1.9% for the duplex scale-
free RD networks with V = 500, V = 1000, and V = 2000,
respectively, which indicates that Eq. (6) predicts the critical
point of the RD process on uncorrelated random scale-free
networks very well when the network size is sufficiently large.

V. PHASE TRANSITION ON DUPLEX NETWORKS
WITH MODULES

Since many real-world networks contain communities
[30,31] or motifs [32,33], it is of much interest to study
RD processes on duplex networks with modular structures.
Consider the RD network consisting of two modules denoted
by Mα and Mβ , with Vα and Vβ nodes, respectively. Each pair
of nodes in Mα or in Mβ is connected by an α link or a β

link with probability pα or pβ , respectively, and the nodes
from different modules are connected by a common link with
probability pb. On average, the α degree and β degree of a
node in Mα are calculated by

kα,α = pα(Vα − 1) + pbVβ, kβ,α = pbVβ, (16)

while those in Mβ are calculated by

kα,β = pbVα, kβ,β = pβ(Vβ − 1) + pbVα. (17)

Then the average α degree, the average β degree, and the
average correlation between them in the RD network are
obtained as

〈kα〉 = Vαkα,α + Vβkα,β

Vα + Vβ

= pαVα(Vα − 1) + 2pbVαVβ

Vα + Vβ

, (18)

〈kβ〉 = Vαkβ,α + Vβkβ,β

Vα + Vβ

= pβVβ(Vβ − 1) + 2pbVαVβ

Vα + Vβ

, (19)

〈kαkβ〉 = Vαkα,αkβ,α + Vβkα,βkβ,β

Vα + Vβ

= pbVαVβ[pα(Vα − 1) + pbVβ] + pbVαVβ[pβ(Vβ − 1) + pbVα]

Vα + Vβ

, (20)

respectively.

A. Dominant module Mα (Vα � Vβ > 0)

In this case, Eqs. (18)–(20) are simplified to

〈kα〉 = pαVα, 〈kβ〉 = 2pbVβ,
(21)

〈kαkβ〉 = pαpbVαVβ + pb
2VαVβ.

Substituting these values into the expression of ρc, represented
by Eq. (6), the critical point of the phase transition to generate
active particles is obtained as

ρc = μ1

μ2

2pα

pα + pb

. (22)

B. Dominant module Mβ (Vβ � Vα > 0)

In this case, Eqs. (18)–(20) are simplified to

〈kα〉 = 2pbVα, 〈kβ〉 = pβVβ,
(23)

〈kαkβ〉 = pβpbVαVβ + pb
2VαVβ.

Substituting these values into Eq. (6), the critical point is
obtained as

ρc = μ1

μ2

2pβ

pβ + pb

. (24)

C. Modules of the same size (Vα = Vβ = V/2)

In this case, we have

〈kα〉 = V

4
(pα + 2pb), 〈kβ〉 = V

4
(pβ + 2pb),

(25)

〈kαkβ〉 = V 2

8
(pαpb + pβpb + 2pb

2).

Then the critical point is calculated by

ρc = μ1

μ2

V 2(pα + 2pb)(pβ + 2pb)

2V 2
(
pαpb + pβpb + 2p2

b

)

= μ1

μ2

(
1 + pαpβ

2pαpb + 2pβpb + 4pb
2

)
, (26)

which is an increasing function of pα and pβ , and a decreasing
function of pb.

Suppose the nodes in one module are connected by α links
and those in the other are connected by β links with the same
probability pm, i.e., pα = pβ = pm, as shown in Fig. 5 , and
denote by ξ = pb/(pm + pb), the critical point which then can
be briefly written by

ρc = μ1

μ2

(1 + ξ )2

4ξ
, (27)
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pb

pm

FIG. 5. (Color online) A duplex RD network with two modules.
All nodes in one module are connected by α links and those in the
other module are connected by β links, with the same probability pm,
while the nodes of different modules are connected by common links
with probability pb.

which is statistically equal to the first term of Eq. (13) by con-
sidering that ξ = pb/(pm + pb) = L/U = θ . Similarly, the
assumption of no degree correlations in the two subnetworks
cannot be held when pb � pm, and the critical point calculated
by Eq. (27) needs to be further modified by

ρc = μ1

μ2

(1 + ξ )2

4ξ
+

(1 + ξ )
[√

4 + μ2
1(1 − ξ )2 − 2

]
4ξμ2

. (28)

Generally, the critical point is a decreasing function of the
ratio pb/pm. In other words, active particles can be signifi-

cantly suppressed on an RD network with a distinct modular
structure, i.e., ρc → ∞ as pb/pm → 0, which is supported
by simulated results, as shown in Fig. 6(a). In this experiment,
each network has two modules and each module has 200 nodes
with pb = 0.05 and pm = 0.05,0.1,0.2,0.3,0.4,0.5, and we
find that the critical point ρc increases as pm increases.
Moreover, the relationship between ρc and the two connection
probabilities pb and pm for duplex modular networks including
different numbers of nodes, i.e., V = 200, V = 400, and
V = 800, are visualized by the three-dimensional graphs in
Figs. 6(b)–6(d), respectively. When pb � pm, as the modular
structure is vanishing, the RD process experiences a phase
transition at a critical point close to ρc = μ1/μ2 = 2. In
the opposite direction, when 0 < pb � pm, as the modular
structure is strengthened while the network is still connected,
the critical point ρc → ∞, as is predicted by Eq. (27) or
(28). This is because, in this situation, different kinds of
particles may be trapped into different modules, and thus their
local ideological or chemical purities are more likely to be
preserved; thus the reaction activity is weakened. Similarly,
here, when the RD process on the network is relatively
steady after sufficient time steps (106 here), it is parallelly
implemented extra 104 time steps with the reaction rates
μ1 = 0.1 and μ2 = 0.05 and the corresponding results are
recorded.

Note that since the analytic result represented by Eq. (28)
is also obtained by applying the mean-field theory with
the assumption that the network size is sufficiently large,
again it is inevitable to find similar discrepancies between
simulated results and analytic predictions, when the network
size is not large enough, as shown in Fig. 6(b). Similarly,
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FIG. 6. (Color online) (a) Phase transitions for RD processes on duplex networks with 400 nodes consisting of two modules of the same
size, for various parameters pb = 0.05 and pm = 0.1,0.2,0.3,0.4,0.5. (b)–(d) The analytic [calculated by Eq. (28)] and simulated critical points
as functions of the inter- and intramodule connection probabilities pb and pm for duplex modular networks including different numbers of
nodes, i.e., V = 200, V = 400, and V = 800, respectively.
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such discrepancy will decrease gradually as the network size
increases, as shown in Figs. 6(c) and 6(d). In order to provide
a more quantitative result, we calculate the average relative
difference ε between analytic and simulated critical points
over all the 36 cases of different pb and pm, which is equal
to 16.7%, 9.6%, and 6.3% for the modular duplex networks
with V = 200, V = 400, and V = 800, respectively. In most
cases, the second term of Eq. (28) is far smaller than the first
term; as a result, similar relative differences can be obtained if
we use Eq. (27) to calculate the critical points.

VI. CONCLUSION

This work provides a more general framework to study RD
processes by considering that different types of links are used
to transfer different kinds of particles in a duplex RD network.
It is found that the phase transition to sustain β particles
is dependent on the correlation between the two degree
sequences of the simplex subnetworks, i.e., it is suppressed if
the α-degree and β-degree sequences are positively correlated
while extended if they are negatively correlated. In particular,
when there is no correlation between the two degree sequences,
it is predicted that the phase transition is equal to μ1/μ2,
independent of the network structure. The reason is that,
in such a situation, statistically, the number of β particles
flowing into the nodes with certain α degree is equal to that
of β particles flowing out of these nodes, so that the effect of
diffusion on the RD process can be neglected. As special cases,
when α or β particles do not diffuse in the network, the same
results are obtained, as already revealed by Colliza et al. [19].

These results imply the effect of isolation on suppressing
epidemics. In fact, today local governments always alert their
people not to travel to the cities or the countries with higher
infection rate when an epidemic has broken out. This process
is simulated by our model where β particles are trapped into
one module while α particles are trapped into the other, in
which case, the phase transition to generate β particles can
be indeed extended and thus the epidemic can be effectively
restrained. On the other hand, the results also indicate that the
positive correlation between different types of traffic networks
has a potential risk to stimulate the epidemic spreading. This
phenomenon should be further verified in the situation where
differences between links are quantitatively reflected by their
abilities to transfer certain particles, that is, one type of link
may transfer certain particles with a higher probability than
another, rather than transferring only one kind of particle,
which is more practical and belongs to our future work.
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APPENDIX A: SOLUTION OF RD EQUATION
ON DUPLEX NETWORKS

Each node vi has two neighboring sets, πα,i and πβ,i , in α

subnetwork and β subnetwork, with kα,i and kβ,i as its α degree

and β degree, respectively. Denoting the present numbers of α

and β particles in node vi by nα,i and nβ,i , respectively, since
both the diffusion rates of α particles and β particles are set to
1, the RD dynamics are described by

∂nα,i

∂t
= −nα,i +

∑
j∈πα,i

μ1nβ,j + nα,j − μ2�j

kα,j

, (A1)

∂nβ,i

∂t
= −nβ,i +

∑
j∈πβ,i

(1 − μ1)nβ,j + μ2�j

kβ,j

, (A2)

where the reaction kernel �i takes the form of �i = nα,inβ,i .
Suppose that there are V (kα,kβ) nodes of α-degree kα and
β-degree kβ in the network, and denote the numbers of α and
β particles by Nα(kα,kβ) and Nβ(kα,kβ), respectively, in these
nodes. Then the densities of α and β particles in the nodes of
α-degree kα are defined by

ρα(kα,kβ) = Nα(kα,kβ)

V (kα,kβ)
, ρβ(kα,kβ) = Nβ(kα,kβ)

V (kα,kβ)
. (A3)

Denote by P (kα,kβ) the joint distribution of α degree and
β degree of the network. Then, by the mean-field theory and
under the assumption of no degree correlation between linked
nodes in each subnetwork, Eqs. (A1) and (A2) become

∂ρα(kα,kβ)

∂t
= −ρα(kα,kβ) + kα

〈kα〉 [μ1ρβ + ρα − μ2�],

(A4)

∂ρβ(kα,kβ)

∂t
= −ρβ(kα,kβ) + kβ

〈kβ〉 [(1 − μ1)ρβ + μ2�],

(A5)

with ρα = ∑
kα

∑
kβ

P (kα,kβ)ρα(kα,kβ), ρβ = ∑
kα

∑
kβ

P (kα,kβ)ρβ(kα,kβ), and � = ∑
kα

∑
kβ

P (kα,kβ)�(kα,kβ),
where the reaction kernel now takes the form of
�(kα,kβ) = ρα(kα,kβ)ρβ(kα,kβ).

Then the stationary states are obtained by setting
∂tρα(kα,kβ) = 0 and ∂tρβ(kα,kβ) = 0, which result in the
following equations:

ρα(kα,kβ) = kα

〈kα〉 [μ1ρβ + ρα − μ2�], (A6)

ρβ(kα,kβ) = kβ

〈kβ〉 [(1 − μ1)ρβ + μ2�]. (A7)

Multiplying Eq. (A7) by P (kα,kβ) and summing it over kα and
kβ , we get

ρβ = μ2

μ1
�. (A8)

By using Eq. (A8), Eqs. (A6) and (A7) are further simplified
as

ρα(kα,kβ) = kα

〈kα〉ρα, ρβ(kα,kβ) = kβ

〈kβ〉ρβ, (A9)

with

ρα = ρ − μ2

μ1
�, ρβ = μ2

μ1
�. (A10)

Then, from Eqs. (A9) and (A10) and by definition of �, we
get the average densities of α and β particles, respectively, on
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the network:

ρα = μ1

μ2

〈kα〉〈kβ〉
〈kαkβ〉 , ρβ = ρ − μ1

μ2

〈kα〉〈kβ〉
〈kαkβ〉 . (A11)

Denoting the node α-degree vector and the corresponding
β-degree vector of the network by Sα = [kα,1,kα,2,. . .,kα,V ]
and Sβ = [kβ,1,kβ,2,. . .,kβ,V ], respectively, Eq. (A11) can be
rewritten as

ρα = μ1

μ2

V 〈kα〉〈kβ〉
SαSβ

T
, ρβ = ρ − μ1

μ2

V 〈kα〉〈kβ〉
SαSβ

T
. (A12)

APPENDIX B: MINIMUM/MAXIMUM CRITICAL POINT
OF PHASE TRANSITION

Equation (A12) suggests a critical point in the phase
transition on the surviving of β particles as

ρc = μ1

μ2

V 〈kα〉〈kβ〉∑V
i=1 kα,ikβ,i

. (B1)

When the diffusion and the reaction rates as well as the
node α-degree and β-degree sequences of the RD network
are provided, Eq. (B1) gives a formula to adjust the critical
point ρc through determining the corresponding relationship
between the two degree sequences.

Given an ordered vector X = [x1,x2, . . . ,xV ], satisfying
xi � xj if i > j , denote two different types of operators �h(Y )
and �h(Y ) with h = 1, . . . ,V , for another disordered vector
Y = [y1,y2, . . . ,yV ]. The objective is to find the maximum
or minimum element in Yh = [y1,y2, . . . ,yV −h+1] and change
its place with yV −h+1 in the vector Y . Denote the maximum
and the minimum elements in the vector Y by yi and yj ,
respectively. Since yi � yV � yj and xV � xi,xj , it must be
satisfied that

yixV + yV xi � xiyi + xV yV ,
(B2)

yjxV + yV xj � xjyj + xV yV ,

which together implies that

X[�1(Y )]T � XYT � X[�1(Y )]T . (B3)

Denote Y� = �V [�V −1(. . . �0(Y ) . . .)] and Y� =
�V [�V −1( . . . �0(Y ) . . . )]. Then, for any disordered vector
Y = [y1,y2, . . . ,yV ], we have

XY�
T � XYT � XY�

T , (B4)

where every two elements yi and yj in Y� satisfy yi � yj if
i > j , and the elements are inversely ordered in Y�. Given
the node α-degree vector Sα = [kα,1,kα,2,. . .,kα,V ] and the
corresponding β-degree vector Sβ = [kβ,1,kβ,2,. . .,kβ,V ] of the
RD network, the above inequalities imply that the critical point
ρc is minimized when the two vectors are in the same order,
i.e., kα,i � kα,j if and only if kβ,i � kβ,j , while it is maximized
when one of them is inversely ordered.

Suppose that only the average α degree and β degree
of the RD network are provided, and the node α-degree
vector Sα = [kα,1,kα,2,. . .,kα,V ] and the node β-degree vector
Sβ = [kβ,1,kβ,2,. . .,kβ,V ] are in the same order and satisfy
that Lα � kα,i � kα,j � Uα and Lβ � kβ,i � kβ,j � Uβ if
i < j . Without loss of generality, suppose that there are l

elements equal to Lα and u elements equal to Uβ in Sα ,

with l + u < V − 1. Then, it is possible to further increase
the value of SαSβ

T by the process: decrease the element
kα,l+1 by δ and increase the element kα,V −u by δ in Sα , with
δ = min(kα,l+1 − Lα,Uα − kα,V −u). In such a situation, it is
satisfied that

(kα,l+1 − δ)kβ,l+1 + (kα,N−u + δ)kβ,N−u

= kα,l+1kβ,l+1 + kα,N−ukβ,N−u + δ(kβ,N−u − kβ,l+1)

� kα,l+1kβ,l+1 + kα,N−ukβ,N−u. (B5)

The process does not change the average α degree of the
RD network and is not terminated until the total number of the
elements Lα and Uα in the vector Sα is not smaller than V − 1.
Similarly, the process is implemented on the vector Sβ . Then
the optimal Sα and Sβ have the following forms:

Sα = [Lα, . . . ,Lα,kα,ν,Uα, . . . ,Uα], (B6)

Sβ = [Lβ, . . . ,Lβ,kβ,ω,Uβ, . . . ,Uβ], (B7)

with Lα � kα,ν � Uα and Lβ � kβ,ν � Uβ . In the same
manner, the value of SαSβ

T is minimized, i.e., the critical
point is maximized, by inversely ordering Sα or Sβ . For
simplicity, suppose that Lα = Lβ = L, Uα = Uβ = U , and
〈kα〉 = 〈kβ〉 = R, if L < R � (L + U )/2, the number of U in
each degree vector is close to κV with κ being calculated by

κ = R − L

U − L
� 1

2
. (B8)

Then the minimum and maximum critical points can be
estimated by

ρc, min ≈ μ1

μ2

R2

κU 2 + (1 − κ)L2
, (B9)

ρc, max ≈ μ1

μ2

L2

2κUL + (1 − 2κ)L2
. (B10)

If L � U , we have κ ≈ (R − L)/U , then Eqs. (B9) and (B10)
are further simplified by

ρc, min ≈ μ1

μ2

R2

U (R − L)
, (B11)

ρc, max ≈ μ1

μ2

UR2

2UL(R − L) + (U − 2(R − L))L2

= μ1

μ2

UR2

2L(R − L)(U − L) + UL2

≈ μ1

μ2

R2

2LR − L2
. (B12)

APPENDIX C: SOLUTION OF RD EQUATION ON
DIRECTED NETWORKS WITH TWO NODES

It should be noted that the assumption of no degree
correlations in the two subnetworks may not be satisfied when
the lower bound of degree L is especially small, i.e., close to
1; thus the results obtained by the mean-field theory should
be modified. In such a situation, both the α subnetwork and β

subnetwork may possess a similar quasistar structure. When
their sequences are positively correlated, they are merged
into a unique quasistar RD network, while if the two degree
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sequences are negatively correlated, they are merged into an
RD network having two modules with the nodes in each
module being connected by the same type of links and the
nodes of different modules being connected by common links.
Since both the networks are composed of two classes of nodes
with those of the same class being completely identical, it is
equivalent to study the RD processes on networks with only
two coupled supernodes (a supernode represents a class of
identical nodes in the initial RD network) in the two cases as
shown in Figs. 2(e) and 2(f), respectively, in the paper.

1. Case I: ηα,B→A = ηβ,B→A = 1, ηα,A→B = ηβ,A→B = θ

In this case, the stationary states of the RD system with only
two coupled nodes are described as in the following equations:

ρα,A = (1 − θ )[μ1ρβ,A + ρα,A − μ2�A]

+ [μ1ρβ,B + ρα,B − μ2�B], (C1)

ρα,B = θ [μ1ρβ,A + ρα,A − μ2�A], (C2)

ρβ,A = (1 − θ )[(1 − μ1)ρβ,A + μ2�A]

+ [(1 − μ1)ρβ,B + μ2�B], (C3)

ρβ,B = θ [(1 − μ1)ρβ,A + μ2�A], (C4)

with �A = ρα,Aρβ,A and �B = ρα,Bρβ,B . By substituting the
values of ρα,B and ρβ,B into Eq. (C1) and rearranging terms,
we get(

μ1 + μ1θ − μ2
1θ

)
ρβ,A − (μ2 − μ1μ2θ )�A − μ2�B = 0.

(C5)

Since only the phase transition to sustain β particles is
concerned, when ρβ → 0, Eq. (C2) is simplified as

ρα,B = θρα,A. (C6)

Then the value of �B is calculated by

�B = ρα,B × ρβ,B

= θ [μ1ρβ,A + ρα,A − μ2�A] × θ [(1 − μ1)ρβ,A + μ2�A]

= (1 − μ1)θ2�A − μ2θ
2ρα,A�A. (C7)

Substituting Eq. (C7) into Eq. (C5) and considering that �A =
ρα,Aρα,A, we have

μ2
2θ

2ρ2
α,A + μ2(1 + θ − μ1θ − μ1θ

2)ρα,A

−μ1(1 + θ − μ1θ ) = 0. (C8)

By solving this quadratic equation, we get the density of α

particles in node A:

ρα,A = μ1

μ2
. (C9)

From Eqs. (C6) and (C9), we get

ρα = μ1

μ2

1 + θ

2
, ρβ = ρ − μ1

μ2

1 + θ

2
. (C10)

2. Case II: ηα,B→A = ηβ,A→B = 1, ηα,A→B = ηβ,B→A = θ

In this case, the stationary states of the RD system are
described by

ρα,A = (1 − θ )[μ1ρβ,A + ρα,A − μ2�A]

+ [μ1ρβ,B + ρα,B − μ2�B], (C11)

ρα,B = θ [μ1ρβ,A + ρα,A − μ2�A], (C12)

ρβ,A = θ [(1 − μ1)ρβ,B + μ2�B], (C13)

ρβ,B = (1 − θ )[(1 − μ1)ρβ,B + μ2�B]

+ [(1 − μ1)ρβ,A + μ2�A]. (C14)

Considering ρβ → 0, Eq. (C12) is simplified as

ρα,A = 1

θ
ρα,B. (C15)

Then, from Eqs. (C13) and (C15), the value of �A is calculated
by

�A = ρα,A × ρβ,A

= 1

θ
ρα,B × θ [(1 − μ1)ρβ,B + μ2�B]

= (1 − μ1)�B + μ2ρα,B�B. (C16)

Substituting Eqs. (C13) and (C16) into Eq. (C14) and consid-
ering that �B = ρα,Bρα,B , we have

μ2
2ρ

2
α,B + μ2(2 − μ1 − μ1θ )ρα,B − μ1(1 + θ − μ1θ ) = 0.

(C17)

By solving this quadratic equation, we get the density of α

particles in node B:

ρα,B =
√

4 + μ2
1(1 − θ )2 + μ1(1 + θ ) − 2

2μ2
. (C18)

From Eqs. (C15) and (C18), we get

ρα =
(

1 + 1

θ

) ⎡
⎣

√
4 + μ2

1(1 − θ )2 + μ1(1 + θ ) − 2

4μ2

⎤
⎦ ,

ρβ = ρ −
(

1 + 1

θ

)⎡
⎣

√
4 + μ2

1(1 − θ )2 + μ1(1 + θ ) − 2

4μ2

⎤
⎦ .

(C19)
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Natl. Acad. Sci. USA 103, 2015 (2006).
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