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Abstract—In modern manufacturing processes, requirements
for automatic fault diagnosis have been growing increasingly as
it plays a vitally important role in the reliability and safety of
industrial facilities. Rolling bearing systems represent a critical
part in most of the industrial applications. In view of the
strong environmental noise in the working environment of rolling
bearing, its vibration signals have nonstationary and nonlinear
characteristics, and those features are difficult to be extracted.
In this article, we proposed a new intelligent fault diagnosis
method for rolling bearing with unlabeled data by using the
convolutional neural network (CNN) and fuzzy C-means (FCM)
clustering algorithm. CNN is first utilized to automatically extract
features from rolling bearing vibration signals. Then, the prin-
cipal component analysis (PCA) technique is used to reduce the
dimension of the extracted features, and the first two principal
components are selected as the fault feature vectors. Finally,
the FCM algorithm is introduced to cluster those rolling bearing
data in the derived feature space and identify the different fault
types of rolling bearing. The results indicate that the newly
proposed fault diagnosis method can achieve higher accuracy
than other existing results in the literature.

Index Terms— Convolutional neural network (CNN), fault
diagnosis, fuzzy C-means (FCM), principal component analy-
sis (PCA), rolling bearing.

I. INTRODUCTION

ACHINERY and equipment occupy a very important

position in modern society. As one of the most impor-
tant and common parts of rotating machinery, rolling bearing
plays an important role in the whole mechanical system.
However, mechanical equipment is often affected by different
types of undesirable faults during operation, which causes
additional costs and losses in production time [1]. Among
them, the mechanical failure caused by the failure of rolling
bearing to use normally accounts for about 30% of the total
failure. The failure of rolling bearings is caused by a variety of
factors, such as incorrect design or installation, acidic liquid
corrosion, lack of lubricating oil, and plastic deformation.
Fault diagnosis of the rolling bearing by the state monitoring
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technology has been an attractive research topic in the past two
decades. During the operation of the bearing, a pulse vibration
signal is generated when the roller passes through the defect
at a frequency determined by the bearing speed, the number
of rolling bodies, the diameter of rolling bodies, the bearing
pitch diameter, and the contact angle of rolling bodies, and
the state monitoring technique based on vibration has always
been the most common technique in this field. The difficulty
of rolling bearing fault diagnosis is that the characteristic
signal of rolling bearing is distributed in a wide frequency
band, so it is easy to be disturbed by noise [2]. In view of
the fact that the vibration signals of rolling bearings have
nonstationary and nonlinear features and it is, thus, difficult to
extract fault features, how to design effective fault diagnosis
methods has become the attractive research focus in recent
years.

On the other hand, deep learning (DL) architectures have
attracted increasing attention in various fields. Various DL
architectures, such as convolutional neural network (CNN) [3],
deep belief network (DBN) [4], sparse autoencoder [5], and
recurrent neural network [6], are widely used in the field
of fault diagnosis of mechanical equipment. Compared with
traditional methods, fault diagnosis based on the DL tech-
nique has advantages, such as faster and more accurate in
diagnosis. Among these DL architectures, the architecture
based on CNN has shown the best performance. However,
CNN was originally designed for image processing and analy-
sis. In order to apply the powerful processing and analysis
capabilities of 2-D-CNN from the image processing area
to the field of fault diagnosis, researchers began to convert
1-D vibration signals into 2-D spectrograms and then used
2-D-CNN to analyze the generated 2-D image format of
fault data [7], [8]. Recently, several works have applied CNN
directly to 1-D signals (see [9]). CNN is a typical supervised
learning deep neural network that can extract hidden features
from the original data set. At present, most fault diagnosis
models based on CNN are classified by CNN directly. In order
to make the neural network better perform the prediction
function, researchers have combined them with advanced
algorithms or statistical methods in other fields. Some classical
combinatorial models, such as the combination of neural
network and support vector machine [10], neural network and
empirical mode decomposition (EMD) method [11], BP neural
network and optimal wavelet tree [12], neural network and
wavelet transform [13]-[15], neural network, and particle
swarm optimization algorithm [16]. Therefore, how to build
a comprehensive prediction model to improve the accuracy of
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model prediction has become a challenging work in the field
of intelligent fault diagnosis.

Although some DL models have shown powerful functions
in classification and regression prediction tasks, these models
remain elusive black boxes. This is a key obstacle for the
wide application of DL technology and the bottleneck for
its further development. It is clear that users will never
trust a model that cannot reasonably explain the solution.
On the other hand, the fuzzy system is easier to understand in
design, and the combination of fuzzy theory and classification
algorithm has gradually come into our vision. In the clustering
method, the hard c-means process is an outstanding traditional
clustering method, which controls each mapping of data set
into a cluster. Fuzzy c-means (FCM) evolved from k-means
clustering has better classification performance. FCM cluster-
ing algorithm is an unsupervised clustering technique and one
of the most widely used fuzzy clustering models [17]. The
FCM algorithm achieves the fuzzy classification of samples
to categories by determining the membership of samples to
categories, making the classification results of target data more
reasonable.

In many fault diagnosis results, the accuracy of fault diag-
nosis based on FCM has been greatly improved, but there
still exist some problems, e.g., the original signals cannot
always be extracted effectively due to the high dimension of
features or data, which may greatly degrade the performance
of fault diagnosis. In view of the problem that the fea-
tures of some original signals cannot be extracted effectively,
some researchers have used methods, such as EMD [18],
ensemble EMD (EEMD) [19], variational mode decomposition
(VMD) [20], and DBN [21] to extract the features of the
original signals, and some better results have been achieved.
However, it is still impossible to distinguish effectively for
some special signals [22].

In this article, a new intelligent fault diagnosis method for
machinery is proposed by using the CNN and FCM clustering
algorithm. It is very challenging to identify the characteristics
of rolling bearings in different states subject to nonstation-
ary and nonlinear noise, and the proposed comprehensive
prediction model first uses CNN as an automatic feature
extractor, adopt the principal component analysis (PCA) to
reduce the dimension of the extracted features, then introduce
the FCM clustering algorithm to cluster the data set in the
feature space. Finally, the test was carried out through the
standard data published by the Bearing Data Center of the
Western Reserve University, USA [23]. With the existing
fault diagnosis method based on a neural network to classify
directly, our classifier does not need a lot of time to train
nor does it require a large number of learning samples. Thus,
it greatly shortens the time of diagnosis, which can be used
for real-time diagnosis. In addition, the clustering performance
and identification accuracy are superior to the existing results.

II. METHODOLOGY

CNN plays an excellent role in fault diagnosis and has been
extensively applied, especially in vibration analysis. However,
CNN is still regarded as an unexplainable “black box” that
cannot convince users. In order to overcome this weakness,
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Fig. 1. Structure of CNN.

this article proposes a fault diagnosis model for rolling bear-
ings based on CNN and FCM. By virtue of the powerful
feature extraction function of CNN, this model reduces the
dimension of extracted features through PCA and then inputs
to FCM with clear physical interpretation for classification.
First, the theoretical framework of CNN, PCA, and FCM
models is introduced, and then, the overall structure of our
method is described and discussed technically.

A. Feature Extraction

In recent years, DL has gradually replaced traditional
intelligent algorithms as the mainstream, and it has been
extensively applied in the areas of speech recognition, image
recognition, and data mining. Compared with the traditional
feature extraction algorithms, the features extracted through
DL are more discriminative, thereby improving the accuracy
of classification. However, most fault diagnosis methods apply
DL to fault classification or data after signal processing
transformation, and the adaptive feature extraction capability
of DL is not fully exerted, which limits the further mining of
original signals by DL algorithms. In order to give full play
to the feature extraction ability of DL, the method proposed
in this article uses CNN in DL as a feature extractor and
takes the original vibration signal as an input to give full play
to CNN’s feature extraction capabilities and improve model
fault diagnosis capabilities. In 1994, Le Cun and Bengio [24]
proposed the CNN model for the first time, inspired by the
information received by the human brain. With the in-depth
study of CNN, Le Cun and Bengio [24] proposed a LeNet-
5 CNN model for character recognition. The CNN model is
basically composed of a convolutional layer, pooling layer, and
fully connected layer, as shown in Fig. 1. In the subsequent
research and practical applications in the literature, CNN plays
an excellent role in feature extraction of the original data,
and it is widely used in data mining, computer vision, natural
language processing, face recognition, and other fields. CNN
only perceives the local information and then synthesizes the
local information at a higher level to obtain global information.
The basic structure of CNN includes two layers: 1) feature
extraction layer and 2) feature mapping layer. The convolution
layer applies convolution operation to transform the input data,
and the convolutional layer is calculated as follows:

ai' = D" XKy b)Y, X, = f(a))
ieM;

ey

where X jl denotes the activation value of the jth feature map
in layer /; M; is the number of feature maps of this layer;
X;'~! is the jth feature map of layer /; Kijl is the weight
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Fig. 2. Neural network model based on the dropout.

matrix; b jl is biased; and “x” is the convolution operator.
f(+) is the nonlinear activation function, which introduces the
nonlinearity into the multilayer neural network. In order to
improve the training speed and the network generalization
ability, a batch normalization layer is implemented. Next,
to increase the training speed of the CNN model and overcome
the problem of gradient disappearance, a nonlinear activation
function, such as a rectified linear unit (ReLU), is necessary.
The ReLU activation function has nonlinear characteristics in
the feature extraction process, and the training effect is better.
The mathematical expression is

f(x) = max{0, x}. 2)

A pooling layer is added between the successive convolu-
tional layers, and by reducing the dimension of the feature
graph, the number of parameters to be trained for the model
is reduced to avoid the occurrence of overfitting. The pooling
layer enhances the robustness of feature extraction through the
lower sampling factor. Typical pooling operations are divided
into mean pooling and max pooling. Pooling reduces the
output image by a factor of L in both dimensions by taking
a region (Lx x Ly) and outputting a value that is the mean
or maximum of the region. The pooling function is expressed
as strict downsampling without filtering: downsample(-), For
every X jl , there is

sz = downsample(le). 3)

The number of parameters of the CNN model is huge,
and the model is complex. Although it has demonstrated
powerful functions, when the experimental data are relatively
small, the overfitting phenomenon may occur. In other words,
the model can show high accuracy in the training set, but the
prediction accuracy is poor in the test set, which will lead to
poor prediction performance. In order to avoid the occurrence
of overfitting, the dropout regularization method is adopted,
and the dropout layer is added after the full connection layer,
as shown in Fig. 2. By setting parameters, the neurons in
the full connection layer will be deactivated with a certain
probability. The experiment proves that dropout is the most
effective method to reduce the phenomenon of deep neural
network overfitting and improves the generalization ability of
CNN so that CNN can perform well in the test set.

B. Feature Dimension Reduction

By the fact that the dimension of feature vector extracted by
CNN is usually high, the PCA technique is adopted to reduce
the dimension of the eigenvectors. PCA is a dimensionality
reduction method often used to reduce the dimensionality of

3507010

large data sets, and it converts the large variable set to a
smaller set that still contains most of the information in the
large variable set, which makes machine learning algorithms
easier and faster to analyze data without having to deal with
irrelevant variables. Assuming that the sample set A is an ¢ X p
matrix, where g represents samples and p represents feature
dimensions, x; is the eigenvector of the ith sample in our
original vector space

Xi = (Xil,xiz, e 7xip)
X1 X2 X1p
X21 X2 o X2p

A= . . o 4)
Xql Xg2 Xqp

For the standardized transformation of the data set, the mean
value and variance are first obtained
q
- Dot Xij

=TT ©

q —_ 2
I (x: — %
g Sl -5) o
J g—1
where ¢ is the number of sample sets, x;; is the jth dimension
eigenvalue of the ith sample, X; is the mean value on the jth
dimension of the original high-dimensional vector space, and
sjz. is the variance on this component; the standardized data set
is
)?ijzi, .,q;j=1,2,...,p). (7)
PCA seeks the projection direction of the maximum vari-
ance and sets the projection direction of the maximum variance
as the unit column vector of a, and the objective function is

1Zq: 1
argmax, = —
: 2ima—]

(% a)? ®)

where a7 is the transpose matrix of a, which satisfies the
following constraint conditions:

ata=1. 9)

Construct the Lagrange multiplier
q

Lw)=%§:q—1@mf+ﬂﬂ—a%) (10)
i=1
among them
i 1 ~ ~T 1 ~T ~
COV:Z (xi : xj):q—lx - X. (11)

=14 -1

To solve the characteristic equation |Cov — A17,,| = 0 of the
covariance matrix Cov, m characteristic roots are obtained.
For each 4;,j =1,2,...,m, solve the system of equations
Covb = 4;b and get the unit feature vector b;.

Construct the dimension reduction transformation matrix

Uj=xbj, j=12,...,m. (12)

It is obvious that the variance projected on the direction of
the first principal component (the eigenvector with the largest

Authorized licensed use limited to: Zhejiang University of Technology. Downloaded on February 02,2021 at 05:32:08 UTC from IEEE Xplore. Restrictions apply.



3507010

eigenvalue) is the largest, which reflects that the information
loss after the extraction of the principal component feature is
the smallest [25].

C. Fault Identification

FCM integrates the essence of fuzzy theory and is an effec-
tive algorithm to realize automatic data classification. This
algorithm is widely used in image segmentation and pattern
recognition areas and has high accuracy and clear physical
interpretation. Therefore, the FCM algorithm is selected as
the main algorithm for fault classification and identification
of rolling bearing. Compared with k-means hard clustering,
FCM provides more flexible clustering results. Aiming at
minimizing the Euclidean distance and the weighted sum of
fuzzy membership of all data points and each clustering center,
FCM constantly modifies the clustering center and classifica-
tion matrix to meet the termination criteria and clusters data
samples with similar characteristics into one class [26], [27].

FCM is a process of iteratively calculating membership u p,
and clustering center p, until they reach the optimal, which is
to minimize the objective function J,, [28], [29]. For a single
sample, the membership of each clustering center is 1. The
specific steps of FCM are as follows.

1) Determine the number of clustering centers p and fuzzy
coefficient ¢ = 2, and initialize the clustering centers
and membership matrix.

2) Calculate the clustering centers y = [p,] according to
the following equation:

o = Z§=1 U, Xp
! Zg=1 Upq
where o is the fuzzy coefficient; p and ¢ are the
class labels; p is the pth sample; x is a sample with
d dimensions; and u,, represents the membership of
sample x, belonging to class g. p, is the center of the
q cluster and also has d dimensions.
3) The Euclidean distance between the sample point and
the clustering center is calculated to update the mem-
bership u ,

13)

1

2
y (nxp—pqn)ﬁff
o=1\lxp—py |l
where || *|| could be any metric that represents distance.
4) Compute the objective function J,,

(14)

Upg =

uoy
2
In =2 b llx,—pgl’, 1<0 <00 (15
p=1 g=1
5) Determine whether the iteration termination condition is
satisfied

max{|u ;’Ll) - u&,’;)‘} <e (16)

(
p
where v is the number of iterations steps and ¢ is the
error threshold.

Stop the iteration if the termination condition is met; oth-
erwise, return to Step 2 to continue the iteration.
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Fig. 3.

The above expression means that, if the iteration continues,
the membership degree will only change slightly; in this
scenario, the optimal solution has been found. This process
converges to the local minimum or saddle point of the
target J,,.

D. Model Design

In this section, the implementation of our proposed fault
diagnosis approach is introduced.

The model is composed of three parts: feature extraction,
dimension reduction, and fault classification. In the feature
extraction segment, as shown in Fig. 3, the CNN model con-
sists of five standard convolution layers, and a global average
pooling layer, a batch normalization layer, and a maxpooling
layer follow each standard convolution layer. The parameters
of the proposed model are represented in Table I. In the CNN
method, the convolution kernel is used to describe the local
characteristics of the data, and the parameters of each con-
volution kernel are determined by the backpropagation (BP)
algorithm, so as to automatically extract the characteristics of
the data. BP refers to the calculation of the error value between
the network output value and the real value by the loss function
and then the BP of the error value. At present, the most widely
used loss function of CNN is the categorical cross-entropy loss
function. In order to train CNN to fit the proposed model, using
the Adam optimization algorithm minimizes the categorical
cross-entropy, whose formula is

l o
E = - Z[ya Int, + (1 — y,)In(l —1,)]

a=1

a7)
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TABLE I
PARAMETERS OF THE CNN NETWORK

Network Layer Size ~ Number
Convolutional layer 1 64x1 16
MaxPooling 1 2x1 16
Convolutional layer 2 3x1 32
MaxPooling 2 2x1 32
Convolutional layer 3 3x1 64
MaxPooling 3 2x1 64
Convolutional layer 4 3x1 64
MaxPooling 4 2x1 64
Convolutional layer 5 3x1 64
MaxPooling 5 2x1 64
Global Average Pooling - -
TABLE II

PARAMETERS OF ROLLING BEARING SKF6205

Pitch diameter
39.04mm

Ball diameter Insidediameter Outside diameter

7.94mm

25mm 52mm

where ¢ is the number of samples of this category; ¢ is the
predicted value; and y is the true value, where the learning
rate is set to 0.001. The ReLU is used as the nonlinear
activation function of each convolution layer to improve the
convergence rate of the model. The trained CNN model is
used to extract the features of rolling bearing vibration signals,
and the obtained feature vector matrix was subjected to PCA
dimensionality reduction operation (the first two PCs were
regarded as the input of FCM for fault diagnosis) and input
into FCM to obtain the final classification result. However,
the membership matrix U obtained using the FCM clustering
algorithm is not suitable as the basis for the final classification.
In order to make the classification results more clear, this
article uses the maximum membership method to harden U.
In the maximum membership method, the maximum member-
ship value of each row in U is set to 1, and the other terms of
the row are set to 0. From the Up,q obtained by this method,
the classification of the samples can be seen intuitively.

Compared with other fault diagnosis models, this model can
effectively extract the characteristics of vibration signals of
rolling bearings and use FCM for fault diagnosis, which is
more interpretable and can achieve fault diagnosis of rolling
bearing more accurately and quickly, which will be validated
in the experiment part.

III. EXPERIMENT AND RESULT ANALYSIS

A. Experimental Data Set

In order to verify the effectiveness of the method proposed
in this article, the experimental data of the bearing data
center of the Western Reserve University are used to verify
the experiment [23], and the experimental platform is shown
in Fig. 4. The test object is the drive end bearing SKF6205-
2RSJEM type deep groove ball bearing in Fig. 5, and the
parameters are shown in Table II.

3507010

Fig. 4. Bearing test platform.

Fig. 5. SKF6205—2RSJEM deep groove ball bearings.

TABLE IIT
ROLLER BEARINGS EXPERIMENTAL DATA

Datasets  Fault type  The number of samples
NR 60/60/60/60
BF1 60/60/60/60
BF2 60/60/60/60
BF3 60/60/60/60
A/B/C/D IRF1 60/60/60/60
IRF2 60/60/60/60
IRF3 60/60/60/60
ORF1 60/60/60/60
ORF2 60/60/60/60
ORF3 60/60/60/60

In this experiment, an acceleration sensor is placed above
the bearing seat at the drive end of the motor, and the
fixed sensor position remains unchanged. The processed faulty
bearings are installed in the test motor to achieve the collection
of vibration acceleration signals of different faulty bearings.
The sampling frequency is 12000 Hz, and the load is 735 W.
Among them, the motor loads include load 0 (1797 rpm), load
1 (1772 rpm), load 2 (1750 rpm), and load 3 (1730 rpm).
Table III shows the working conditions. In Table III, normal
data (NR) and three faults inner race fault (IRF), outer race
fault (ORF), and ball fault (BF) with fault diameters of 0.18
(1), 0.36 (2), and 0.54 mm (3 hp) are employed in this
article. A, B, C, and D represent four data sets; each data set
contains rolling bearing data in ten different states. Each type
of failure data set has 60 samples and contains 2048 sampling
points, so different data sets A, B, C, and D have a total
of 600 samples. The time-domain figure of the various original
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Fig. 6. Time-domain waveforms for each working condition. (a) NR. (b) BF1. (c) BF2. (d) BF3. (e) IRFI. (f) IRF2. (g) IRF3. (h) ORFI. (i) ORF2. (j) ORF3.

vibration signals is shown in Fig. 6. The method of comparison
with the EEMD-SVD-FCM model is used for analysis [19].

B. Procedures of Our Method

For the rolling bearing fault diagnosis method using
CNN-based feature extraction and FCM clustering, vibration
signal of rolling bearing under different state is collected as a
data set. Then, the pretrained CNN model is used for feature
extraction of the 1-D vibration signal of the rolling bearing.
Through the CNN model, the vibration signal characteristics of
rolling bearings in different states can be extracted effectively.
On the basis of the trained CNN model, the clustering analysis
is carried out for the data sets of ten different states of rolling
bearings. Specific operation steps are as follows.

1)

2)

3)

4)

Collect vibration signals of rolling bearings in different
states as a data set, preprocess the collected vibration
signals appropriately, and train and test the model as
original signals.

The original signal is divided into known fault samples
and fault samples to be tested, input into the trained
CNN model, extract its features, and use PCA to reduce
the dimension of the extracted features.

The clustering center and membership matrix of the
FCM model are updated by the feature set of known
fault samples. When the objective function J,, meets
the iteration termination condition, it stops updating and
outputs clustering center and the hardened membership
matrix.

According to the clustering center and membership
matrix of the known fault samples, the fault samples

to be tested are identified to determine which type of
known fault samples they belong to. The specific iden-
tification steps are as follows: the membership matrix
of the known fault samples and the fault samples to
be tested is merged to form a matrix of (N + 1) rows
and ten columns. If all elements in line N + 1 of the
membership matrix after hardening are the same as all
elements in line m (I < m < N), it indicates that
the fault sample to be identified belongs to the same
category as the mth known fault sample. As shown in
the following matrix, all elements in the last row are the
same as all elements in the first row, indicating that the
fault category of the sample to be tested is the same as
the known fault sample in the first row

01 0 0 0 0 0 O
01 0 0 0 0 0 O

0 07
0 0

e
e
e
e
e
e
S
e
[

C. Comparison Studies

In order to further verify the superiority of the proposed

method, it is compared with the method based on EEMD
feature extraction and FCM clustering. In this article, data set
A is used as a known fault sample, and the CNN-PCA-FCM
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Fig. 7. CNN-PCA-FCM clustering result.

TABLE IV
COMPARISON RESULTS OF TWO CLUSTERING EFFECTS

Model Dataset PC CE
EEMD-SVD-FCM [19] A 0.832 0.332
CNN-PCA-FCM A 0913 0.185

model and the EEMD-SVD-FCM model [19] are trained,
respectively. In addition, the standard clustering center and
membership matrix obtained from data set A are adopted to
perform fault diagnosis for data sets B, C, and D.

First, the CNN-based feature extraction and FCM clustering
methods mentioned in this article are used for verification,
including the following two consecutive stages.

1) Input the extracted rolling bearing data into the
trained CNN model; the known fault sample data
and the fault sample data to be identified are feature
extracted; and the extracted features are subject to PCA
dimensional-reduction operation. The eigenvector matrix
X, composed of the eigenvectors of ten states of the
rolling bearing is shown in the following. It can be seen
that the feature vectors of each fault can be effectively

distinguished
Xy
[—1.7627 3.8869 —0.3758 —2.3487 1.5355]
0.0782 2.9407 —1.5263 —3.4634 3.3237
—4.6509 6.1193 —0.3858 0.6110 —2.3673
1.2705 —4.6123 —0.4790 —5.3682 2.7425
| 48231 0.5126  7.3043 —2.4319 —4.3973
| 65775 0.4797 —5.8158 3.0874 —2.5528|"
2.0200 —0.1679 3.3813 6.1739 5.6962
—6.4627 —4.5779 0.1408 1.8258 —1.7377
—0.2401 —3.3569 —0.0782 —1.0493 —0.1554
| —2.6363 —0.5623 —0.8032 1.9346 —1.5159]

2) The feature set of known fault samples is input into
the FCM model. Since there are ten types of known

fault samples, the number of clustering centers is set to
10, and the iteration termination error is ¢ = 0.0001.
The FCM clustering algorithm is used to cluster eigen-
vector matrix to obtain clustering centers and mem-
bership matrix. In order to increase the visualization
effect, the known failure sample data are increased to
600 groups, and the image shown in Fig. 7 is obtained.
The red five-pointed star in the figure is the clustering
center. It can be seen that each type of sample point
closely surrounds the clustering center, which can effec-
tively distinguish different faults. Then, we classify the
fault samples to be tested, and the accuracy rate can
reach to 100%

[[21.0792 5.1034 4.5956 2.2294 1.7220]
30.3176  7.5939 6.7632 4.7863 2.3595
16.8549 4.5143 3.9445 1.5886 1.1038
38.9590 15.4329 9.2452 3.8851 2.7347

X — 31.5331 8.1702 7.4361 4.5018 2.7318
27 | 68.4619 14.4076 11.2001 6.1101 3.2710
80.3059 11.5944 9.5193 4.9993 2.8735
14.9807 5.2968 4.3178 2.4615 1.8029
57.8322 18.1139 14.2047 6.1728 3.3535
| 7.8486 62913 3.7587 3.4911 2.9291 |

EEMD feature extraction and FCM clustering are used to
repeat the above steps, and the results will be compared with
the proposed method. The EEMD-SVD-FCM model decom-
posing the vibration signal of the rolling bearing by the EEMD
method and 7 intrinsic mode functions (IMFs) i, i, ..., 1,
are obtained. The n IMF components are combined into the
initial eigenvector matrix A = [iy, i2, .. ., in]". The singular
value decomposition (SVD) of matrix A is carried out to
obtain the singular value 6 = [J, 2, ..., d,], which is taken
as the eigenvector matrix of the rolling bearing. Since the
fault vibration signal characteristics of the rolling bearing are
mainly concentrated on the first few IMF components, the first
five IMF components are selected for feature extraction in
this article. The eigenvector matrix X, composed of the
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TABLE V
RESULTS OF CLASSIFICATION ACCURACY I

Test accuracy(%)

Model Dataset Total (%)
BFI BF2 BF3 IRFl IRF2 IRF3 ORFlI ORF2 ORF3
B 96.7  66.7 100 90 100 100 100 100 91.7 96.7 94.17
EEMD-SVD-FCM C 100 100 233 100 100 100 100 100 81.7 86.7 89.17
D 100 71.7 100  76.7 100 100 100 100 100 40 88.83
B 100 100 100 100 96.6 100 100 100 100 98.3 99.5
CNN-PCA-FCM C 100 100 100 100 100 100 100 100 100 100 100
D 100 100 100 933 100 100 100 100 100 100 99.3
eigenvectors of ten states of the rolling bearing is shown TABLE VI
above. It can be seen that the eigenvectors of the second RESULTS OF CLASSIFICATION TIME
row [30.3176 7.5939 6.7632 4.7863 2.3595] and the fifth row
[31.5331 8.1702 7.4361 4.5018 2.7318] of the eigenvector Model CNNAPCA+FCM _ EEMD+SVD+FCM
matrix are very similar; the third row [16.8549 4.5143 3.9445 Time S-17s 1142.33s
1.5886 1.1038] and the eighth row [14.9807 5.2968 4.3178
TABLE VII

2.4615 1.8029] of the eigenvector matrix are also very similar;
and the features extracted from different fault data are not
distinguished effectively, which will affect the subsequent
search of the standard clustering center.

The two indicators, partition coefficient (PC) and classifica-
tion entropy (CE), are used to evaluate the clustering effect of
the EEMD-SVD-FCM model [19] and the CNN-PCA-FCM
model in our work. When the PC value is close to 1 and the
CE value is close to 0, the clustering effect is better, and PC
and CE are defined [30] as

1 &
ORI
L

_—;Z_:Z_: pq 10g(tt ) (19)

where u,, denotes the membership value of the gth point in
the pth cluster.

Data set A is used to evaluate the clustering effect
of the EEMD-SVD-FCM model and the CNN-PCA-FCM
model, and the comparison results of its clustering effect
are shown in Table IV. It can be seen that the PC value
of the CNN-PCA-FCM is 8% points higher than that of the
EEMD-SVD-FCM model, and the CE value is closer to 0.

In order to prove that CNN can extract signals effectively,
we use classification accuracy to compare the CNN-PCA-FCM
model and the EEMD-SVD-FCM model. Using the standard
clustering center and membership matrix obtained from data
set A, fault diagnosis is carried out on data sets B, C, and D of
other load conditions. The corresponding clustering accuracy
is shown in Table V. As can be seen from Table V, the classi-
fication accuracy of the CNN-PCA-FCM model is higher than
that of the EEMD-SVD-FCM model with the same diagnostic
problem and diagnostic data, up to 100%. Taking 60 test
samples as an example, it follows from Table VI that the
CNN-PCA-FCM model saves much more time compared with
the EEMD-SVD-FCM model.

To further illustrate the advantages of the CNN model
proposed in this article, we use two schemes to change the

RESULTS OF CLASSIFICATION ACCURACY II

Model
Dataset
CNN+PCA+FCM Schemel Scheme?2
B 99.5 98.5 100
Test accuracy(%) C 100 90 89.83
D 99.3 80 79

structure of CNN to form a new CNN model, and we also
use data sets B, C, and D to compare with the CNN model
in this article. We denote Convolutional layerl 4+ MaxPool-
ingl as layerl, Convolutional layer2 + MaxPooling? as layer2,
Convolutional layer3 + MaxPooling3 as layer3, Convolutional
layer4 + MaxPooling4 as layer4, and Convolutional layer5 +
MaxPooling5 as layer5. Since the parameters of layer3, layer4,
and layer5 of the CNN model are the same, the specific scheme
is given as follows: schemel: layerl + layer2 + layer3;
scheme?2: layerl + layer2 + layer3 + layer4. The comparison
results are shown in Table VII, and the advantages of the CNN
model in this article are further illustrated by the comparison
with the schemel and scheme?2.

By comparing the feature vector matrix, clustering effect,
diagnosis accuracy, and diagnosis time, the proposed method
can effectively extract the characteristics of the rolling bearing
vibration signal, and to distinguish the clustering effect and
the diagnosis time, the identification accuracy is superior to
the EEMD-SVD-FCM model.

IV. CONCLUSION

In this article, we proposed an approach for fault diagnosis
using CNN and FCM clustering algorithm. In this work, CNN
is used to automatically extract features from rolling bearing
vibration signals, and then, PCA is used to reduce the dimen-
sion of the extracted features. Finally, fault diagnosis has been
achieved via clustering those rolling bearing data in the derived
feature space using the FCM algorithm. The experimental data
from the bearing data center of Western Reserve University
are tested, and the performance is compared with the method
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based on EEMD, which proves the effectiveness of the method
proposed in this article. More specifically, our method takes
less time for the diagnosis and can also effectively identify
the fault types that are difficult to distinguish by the EEMD.
In future work, the signal preprocessing method can be further
studied to improve the performance of the current method.
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